Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 33

Full-Text Articles in Engineering

Development Of Advanced Germanium Detectors For Rare Event Physics, Sanjay Bhattarai Jan 2023

Development Of Advanced Germanium Detectors For Rare Event Physics, Sanjay Bhattarai

Dissertations and Theses

High Purity Germanium (HPGe) detectors are widely used in rare-event physics searches for dark matter, neutrinoless double-beta decay, and solar neutrinos. This dissertation fo- cuses on improving crystal quality by controlling the impurity concentration, dislocation density, and growth environment as well as developing advanced Ge detectors for various physics applications. The dissertation presents experimental investigations of electrical conduction mechanisms in p-type amorphous germanium (a-Ge), which is used as an elec- trical contact material in HPGe detectors. By measuring the surface leakage current from three high-purity planar Ge detectors, we determine the localization length and hopping parameters in a-Ge. The dissertation …


Developing Mesoporous Silica Nanoparticle-Based Stimuli-Responsive Nanocarriers For Delivery Of Small Molecule Therapeutics Against Colon Cancer Cells, Nisitha Lakmal Wellala Wijewantha Jan 2023

Developing Mesoporous Silica Nanoparticle-Based Stimuli-Responsive Nanocarriers For Delivery Of Small Molecule Therapeutics Against Colon Cancer Cells, Nisitha Lakmal Wellala Wijewantha

Dissertations and Theses

This dissertation delves into the innovative application of mesoporous silica nanoparticles (MSNs) for targeted drug delivery in colorectal cancer (CRC), one of the most prevalent and deadly forms of cancer worldwide. The initial focus of the research is on developing enzyme-responsive MSNs loaded with veratridine (VTD), an alkaloid derived from natural sources that demonstrates potent anticancer activity. The nanoparticles have been engineered to deliver VTD selectively to CRC cells, releasing the payload upon being exposed to specific enzymes primarily secreted by these cells. This strategy has dual advantages of amplifying the anticancer effects while minimizing potential side effects on healthy …


An Experimental Study Of Norton And Thule Cooking Pot Performance, Caelie Marshall Butler Sep 2022

An Experimental Study Of Norton And Thule Cooking Pot Performance, Caelie Marshall Butler

Dissertations and Theses

Ceramic technology was adopted by hunter-gatherers of the Paleo-Inuit Norton tradition in the Western Arctic between 2800 and 2500 years B.P., corresponding with an increase in the use of aquatic resources. Pottery production and use continued until approximately 1,500 BP, and resumed during the Neo-Inuit Birnirk and Thule periods, approximately 1,350 years BP. The technical characteristics of Norton and Thule ceramics suggest they performed differently when used for cooking, with Norton ceramics best suited for cooking using direct or suspended heat, and Thule ceramics best suited for indirect heat. Prior experimental archaeological research has focused on Thule ceramics, with limited …


Materials And Methodologies For Spectroscopic And Optical Analytical Applications In Cultural Heritage Conservation Science, Lyndsay Nichole Kissell Jan 2022

Materials And Methodologies For Spectroscopic And Optical Analytical Applications In Cultural Heritage Conservation Science, Lyndsay Nichole Kissell

Dissertations and Theses

The field of conservation science falls in the intersection of science and art. The work of conservation scientists may include any single subdiscipline of chemistry, though it is most commonly a highly interdisciplinary field taking skills from analytical, organic, and inorganic chemistry, as well as surface and materials science. The aims of conservation scientists are to answer questions about the production and aging of material cultural heritage. Knowing the materials used by an artist can lead to insight about the intentions of the object and knowing how those materials degrade will enable the use of preventative measures to ensure the …


Random Lasing In Nano-Crystalline Zinc-Oxide Films, Benito Reynaldo Resendiz Jan 2022

Random Lasing In Nano-Crystalline Zinc-Oxide Films, Benito Reynaldo Resendiz

Dissertations and Theses

In this thesis, we explore the preparation of random lasers (RLs) using solution-deposited, randomly packed nano-particle films of zinc oxide (ZnO) impregnated with silicon dioxide (SiO2) nanospheres. RLs have their scatterers randomly oriented, while their lasing comes from light propagating along closed paths through the scattering environment. It is shown here that random lasing is readily observed in films made of submicron sized ZnO particles. Adding transparent SiO2 nanospheres to the films, we show there is an effective improvement of the lasing that is observable in all of the samples spectra. Specifically, we found that the lasing …


Improved Predictive Modeling Techniques For Non-Linear Solder Material Behavior, Arman Millian Ahari Sep 2021

Improved Predictive Modeling Techniques For Non-Linear Solder Material Behavior, Arman Millian Ahari

Dissertations and Theses

Accurate prediction of fatigue life of solder joints in electronic packaging applications becomes of critical importance as semiconductor device technology and manufacturing constraints grow in complexity. To gain visibility on IC device performance and reliability, thermo-mechanical simulation is performed based on a unified, viscoplastic material model, which is dependent on nine parameters.

In this study, an improved method of Anand parameter extraction, which involves curve-fitting non-linear experimental stress data, is proposed to improve the accuracy of numerical predictions for solder reliability. Theoretical equations for uni-axial stress-strain response and creep response are derived, then details on their relevance to experimental and …


Development Of Graphene Synthesis And Characterization Techniques Toward Cmos Applications And Beyond, Otto Kno Zietz Jan 2021

Development Of Graphene Synthesis And Characterization Techniques Toward Cmos Applications And Beyond, Otto Kno Zietz

Dissertations and Theses

Graphene exhibits mechanical and electrical properties which, coupled with its two dimensional (2D) morphology, make it an attractive material component for inclusion in a wide range of industries. Since the discovery of graphene in 2004, industry adoption has been limited due to the demanding synthesis requirements for high quality and connected graphene as well as the difficulties associated with direct incorporation. Chemical vapor deposition (CVD) has emerged as the most cost efficient method for producing high quality graphene at scales suitable for mass production. However, the 1000°C temperatures and micrometer thick catalysts required for this process preclude direct inclusion in …


Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand Jan 2021

Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand

Dissertations and Theses

Localized chemical delivery plays an essential role in the fundamental information transfers within biological systems. Thus, the ability to mimic the natural chemical signal modulation would provide significant contributions to understand the functional signaling pathway of biological cells and develop new prosthetic devices for neurological disorders. In this paper, we demonstrate a light-controlled hydrogel platform that can be used for localized chemical delivery in a high spatial resolution. By utilizing the photothermal behavior of graphene-hydrogel composites confined within micron-sized fluidic channels, patterned light illumination creates the parallel and independent actuation of chemical release in a group of fluidic ports. The …


Molecular To Macroscopic Understanding Of Chloroaluminate Anion Intercalation In Rechargeable Aluminum-Graphite Batteries, Jeffrey Xu Jan 2021

Molecular To Macroscopic Understanding Of Chloroaluminate Anion Intercalation In Rechargeable Aluminum-Graphite Batteries, Jeffrey Xu

Dissertations and Theses

Today’s global energy challenges pose an urgent need to electrify transportation and better store intermittent renewable energy sources (e.g., solar and wind energy). For such large-scale battery applications, aluminum batteries are a promising “beyond lithium-ion” technology due to the high volumetric capacity, earth abundance, low-cost, and inherent safety of aluminum metal. However, there are very few compatible positive electrode materials that exhibit high energy density and cycling stability, in part due to the challenges of electrochemically intercalating highly charged Al3+ cations. Recently, graphite has been demonstrated as a promising positive electrode material in non-aqueous rechargeable aluminum batteries, which store …


Development Of An Injectable Methylcellulose Hydrogel System For Nucleus Pulposus Repair And Regeneration, Nada A. Haq-Siddiqi Jan 2021

Development Of An Injectable Methylcellulose Hydrogel System For Nucleus Pulposus Repair And Regeneration, Nada A. Haq-Siddiqi

Dissertations and Theses

Low back pain is the most common cause of disability in the world and is often caused by degeneration or injury of the intervertebral disc (IVD). The IVD is a complex, fibrocartilaginous tissue that allows for the wide range of spinal mobility. Disc degeneration is a progressive condition believed to begin in the central, gelatinous nucleus pulposus (NP) region of the tissue, for which there are few preventative therapies. Current therapeutic strategies include pain management and exercise, or surgical intervention such as spinal fusion, none of which address the underlying cause of degeneration. With an increasingly aging population, the socioeconomic …


Macro - And Microstructure Evaluation And Field Applications Of Concrete With Recycled Glass Pozzolan, Marija Krstic Jan 2020

Macro - And Microstructure Evaluation And Field Applications Of Concrete With Recycled Glass Pozzolan, Marija Krstic

Dissertations and Theses

Concrete is the most used material in the world, second only to water. Conventional concrete is produced with Portland cement (PC). The production of cement is an energy intensive operation that has raised significant environmental concerns, since one ton of cement generates an equal ton of CO2. In the USA about 90 million tons of cement are used annually, with 3 million tons used in New York. Most contemporary concrete applications for buildings and infrastructure use high-performance concrete (HPC) mixtures which are produced by replacing a percentage of cement with supplementary cementitious materials (SCMs), consisting mainly of fly-ash …


The Optimized Synthesis Of Copper Nanowire For High-Quality And Fabrication Of Core-Shell Nanowire, Suhyun Lee Dec 2019

The Optimized Synthesis Of Copper Nanowire For High-Quality And Fabrication Of Core-Shell Nanowire, Suhyun Lee

Dissertations and Theses

Flexible electronics are the promising technology for prospective application in foldable phones. Currently, indium tin oxide (ITO) has been widely used for electronic devices including flat-panel display. However, it is brittle and expensive. Metal nanowires are considered as alternative materials. Among various metal nanowires, copper nanowires are attractive because of its high electrical conductivity, better flexibility, and low cost compared with ITO. However, copper nanowires are very prone to oxidize, which causes subsequent degradation of electrical conductivity. Due to this oxidation issue, core-shell structure nanowires, which are formed silver shell having high conductivity and low resistivity on the surfaces of …


Early Detection Of Corrosion Via Hydrogel-Based Spectroelectrochemical Sensors, Capri Ann Price Nov 2018

Early Detection Of Corrosion Via Hydrogel-Based Spectroelectrochemical Sensors, Capri Ann Price

Dissertations and Theses

The backbone of the industrialized world is comprised of refined, zerovalent metal, a material which thermodynamically favors an oxidative return to more chemically stable states. There are many methods used to slow or delay this process, such as protective coatings, sacrificial anodes, and alloys, but no method can entirely prevent corrosion. This body of work instead proposes detecting the earliest chemical markers of corrosion: that is, metal ions as they solubilize from a metal surface. Such information would allow maintenance personnel to make informed decisions about the necessity or lack thereof of preventive maintenance, and intervene before advanced damage has …


Novel 2d Structure Nanomaterials Synthesis And Ir Absorption, Suming Wang Aug 2018

Novel 2d Structure Nanomaterials Synthesis And Ir Absorption, Suming Wang

Dissertations and Theses

Nanomaterials have gained much attention as in energy storage application for its unique electrical properties. Many research groups have developed various methods to fabricate nanomaterials for various applications. However, there exists much possibilities of developing cost-effective methods for nanomaterial fabrication. No one has studied using natural organic compound A as solution base for wet process nanomaterial synthesis.

In this study, a new method of fabricating two-dimensional structure nanomaterials is proposed. This method is applicable for multiple metal elements such as copper oxide, copper hydroxide, and iron oxide. The two dimensional structure nanomaterials have prestige properties because of their large surface …


Microstructure And Mechanical Properties Of Additive Manufacturing Titanium Alloys After Thermal Processing, Ahmet Alptug Tanrikulu Dec 2017

Microstructure And Mechanical Properties Of Additive Manufacturing Titanium Alloys After Thermal Processing, Ahmet Alptug Tanrikulu

Dissertations and Theses

Titanium alloys are widely used for aerospace and biomaterial applications since their high specific strength, and high corrosion resistivity. Besides these properties, titanium is an excellent biocompatible material widely used for internal body implants. Because the products have complex geometries in both applications, Additive Manufacturing (AM) methods have been recently applied for production. AM methods can process a direct 3-D shape of the final product, decrease total production time and cost. However, high residual stress of the final product limits the application of AM components, especially the ones that are exposed to cyclic loading. In the present study, the initial …


Building Energy Model Calibration For Retrofit Decision Making, Nicolas R. Johnson Mar 2017

Building Energy Model Calibration For Retrofit Decision Making, Nicolas R. Johnson

Dissertations and Theses

Accommodating the continued increase in energy demand in the face of global climate change has been a worldwide concern. With buildings in the US consuming nearly 40% of national energy, a concerted effort must be given to reduce building energy consumption. As new buildings continue to improve their efficiency through more restrictive energy codes, the other 76.9 billion square feet of current building stock falls further behind. The rate at which current buildings are being retrofit is not enough and better tools are needed to access the benefits of retrofits and the uncertainties associated with them. This study proposes a …


One-Dimensional Nanostructure And Sensing Applications: Tin Dioxide Nanowires And Carbon Nanotubes, Hoang Anh Tran Feb 2016

One-Dimensional Nanostructure And Sensing Applications: Tin Dioxide Nanowires And Carbon Nanotubes, Hoang Anh Tran

Dissertations and Theses

The key challenge for a nanomaterial based sensor is how to synthesize in bulk quantity and fabricate an actual device with insightful understanding of operational mechanisms during performance. I report here effective, controllable methods that exploit the concepts of the "green approach" to synthesize two different one-dimensional nanostructures, including tin oxide nanowires and carbon nanotubes. The syntheses are followed by product characterization and sensing device fabrications as well as sensor performance understanding at the molecular level. Sensor-analyte response and recovery kinetics are also presented.

The first part of the thesis describes bulk-scale synthesis and characterization of tin oxide nanowires by …


Constant Interface Temperature Reliability Assessment Method: An Alternative Method For Testing Thermal Interface Material In Products, Christian Amoah-Kusi May 2015

Constant Interface Temperature Reliability Assessment Method: An Alternative Method For Testing Thermal Interface Material In Products, Christian Amoah-Kusi

Dissertations and Theses

As electronic packages and their thermal solutions become more complex the reliability margins in the thermal solutions diminish and become less tolerant to errors in reliability predictions. The current method of thermally stress testing thermal solutions can be over or under predicting end of life thermal performance. Benefits of accurate testing and modeling are improved silicon yield in manufacturing, improved performance, lower cost thermal solutions, and shortened test times.

The current method of thermally stress testing is to place the entire unit in an elevated isothermal temperature and periodically measure thermal performance. Isothermally aging is not an accurate representation of …


Measuring The Effect Of Vegetated Roofs On The Performance Of Photovoltaic Panels In Combined Systems, Hamid Hawi Kadham Ogaili May 2015

Measuring The Effect Of Vegetated Roofs On The Performance Of Photovoltaic Panels In Combined Systems, Hamid Hawi Kadham Ogaili

Dissertations and Theses

Recent studies suggest that integration of photovoltaic panels with green roofs may improve the performance of both. While vegetation may provide a benefit by reducing the net radiation load on the underside of the photovoltaic (PV) panels, it may also affect convective cooling of panels, and consequently, panel efficiency. Both effects likely diminish with the height of the PV panel above the roof, although placing PV panels too close to the vegetation increases the risk of the plants growing over the edges of, and shading the PV panel. There is a gap in the literature with respect to evaluating these …


Stress Analysis For Chip Scale Packages With Embedded Active Devices Under Thermal Cycling, Hyunwook Yeo Jun 2014

Stress Analysis For Chip Scale Packages With Embedded Active Devices Under Thermal Cycling, Hyunwook Yeo

Dissertations and Theses

One of the main challenges in the electronics manufacturing and packaging development is how to integrate more functions inside the same or even smaller size. To meet the demand for higher integration, the interest toward passive and active component embedding has been increasing during the past few years. One of the main reasons for the growing interest toward embedded active components, in addition to demand for higher packaging density, is the need for better electrical performance of the component assemblies. However, it is little known how embedded IC and passives affect the reliability of IC packaging.

Solder joints have been …


Experimental Investigation Of Lateral Cyclic Behavior Of Wood-Based Screen-Grid Insulated Concrete Form Walls, John Stuart Garth Jun 2014

Experimental Investigation Of Lateral Cyclic Behavior Of Wood-Based Screen-Grid Insulated Concrete Form Walls, John Stuart Garth

Dissertations and Theses

Insulated concrete forms (ICFs) are green building components that are primarily used for residential wall construction. Unlike most polystyrene based ICF variants, the Faswall ICFs used in these experiments were significantly denser because they were made from recycled wood particles and cement. The current design approach for structures constructed with this type of wall form only allows the designer to consider the contribution of the reinforced concrete cores. Previous research has shown that this approach may be conservative. This project experimentally evaluated the lateral structural response of these types of grid ICF walls under increasing amplitude of in-plane cyclic loading. …


Solid State Pre-Formed Electronics Adhesive (Spea), Alexander Randon Cope Sep 2013

Solid State Pre-Formed Electronics Adhesive (Spea), Alexander Randon Cope

Dissertations and Theses

In mobile and handheld consumer electronic markets, product use conditions drive the requirement for mechanical strength and device durability. The majority of relatively large form factor electronic components in a laptop, mobile internet device, PDA, or mobile phone use an adhesive as a stiffener to help protect the component from physical stresses imposed by daily wear and tear. Described herein is an innovative solution referred to as Solid State Pre-Formed Electronics Adhesive (SPEA), which enables a decrease in circuit board manufacturing throughput time while increasing mechanical durability with a consistent and characterized adhesive application process.

Today, many consumer electronic ODM's …


Capillarity-Driven Droplet Ejection, Andrew Paul Wollman Jun 2012

Capillarity-Driven Droplet Ejection, Andrew Paul Wollman

Dissertations and Theses

Drop Towers provide brief terrestrial access to microgravity environments. When used for capillary fluidics research, a drop tower allows for unique control over an experiment's initial conditions, which enables, enhances, or otherwise improves the study of capillary phenomena at significantly larger length scales than can normally be achieved on the ground. This thesis provides a historical context for the introduction of a new, highly accessible, 2.1s tower design used for capillary research and presents a variety of demonstrative experimental results for purely capillarity-driven flows leading to bubble ingestion, sinking flows, multiphase flows, and droplet ejections. The focus of this thesis …


Fundamental Properties Of Functional Zinc Oxide Nanowires Obtained By Electrochemical Method And Their Device Applications, Athavan Nadarajah Jan 2012

Fundamental Properties Of Functional Zinc Oxide Nanowires Obtained By Electrochemical Method And Their Device Applications, Athavan Nadarajah

Dissertations and Theses

We report on the fundamental properties and device applications of semiconductor nanoparticles. ZnO nanowires and CdSe quantum dots were used, prepared, characterized, and assembled into novel light-emitting diodes and solar cells. ZnO nanowire films were grown electrochemically using aqueous soluble chloride-based electrolytes as precursors at temperatures below 90° C. Dopants were added to the electrolyte in the form of chloride compounds, which are AlCl3, CoCl2, CuCl2, and MnCl2. The optical, magnetic, and structural properties of undoped and transition-metal-ion doped ZnO nanowires were explored. Our results indicate that the as-grown nanowire structures have …


A Feasibility Study Of Model-Based Natural Ventilation Control In A Midrise Student Dormitory Building, Steven James Gross Jan 2011

A Feasibility Study Of Model-Based Natural Ventilation Control In A Midrise Student Dormitory Building, Steven James Gross

Dissertations and Theses

Past research has shown that natural ventilation can be used to satisfy upwards of 98% of the yearly cooling demand when utilized in the appropriate climate zone. Yet widespread implementation of natural ventilation has been limited in practice. This delay in market adoption is mainly due to lack of effective and reliable control. Historically, control of natural ventilation was left to the occupant (i.e. they are responsible for opening and closing their windows) because occupants are more readily satisfied when given control of the indoor environment. This strategy has been shown to be effective during summer months, but can lead …


Phase Change Materials As A Thermal Storage Device For Passive Houses, Kevin Ryan Campbell Jan 2011

Phase Change Materials As A Thermal Storage Device For Passive Houses, Kevin Ryan Campbell

Dissertations and Theses

This study describes a simulation-based approach for informing the incorporation of Phase Change Materials (PCMs) in buildings designed to the "Passive House" standard. PCMs provide a minimally invasive method of adding thermal mass to a building, thus mitigating overheating events. Phase change transition temperature, quantity, and location of PCM were all considered while incrementally adding PCM to Passive House simulation models in multiple climate zones across the United States. Whole building energy simulations were performed using EnergyPlus from the US Department of Energy. A prototypical Passive House with a 1500 Watt electric heater and no mechanical cooling was modeled. The …


The Influence Of Halloysite Content On The Shear Strength Of Kaolinite, Reka Katalin Gabor Jan 1981

The Influence Of Halloysite Content On The Shear Strength Of Kaolinite, Reka Katalin Gabor

Dissertations and Theses

The objective of this thesis is to determine the relative shear strengths of halloysite, kaolinite, synthetic mixtures, and local soils, to investigate the influence of halloysite content on the shear strength of kaolinite, and to explore the possibility that the strength properties of soil clays might be controlled by the relative content of their component minerals.


A Feasibility Analysis Of A Directly Sun-Pumped Carbon Dioxide Laser In Space, Seiichi Morimoto May 1979

A Feasibility Analysis Of A Directly Sun-Pumped Carbon Dioxide Laser In Space, Seiichi Morimoto

Dissertations and Theses

The possibility of using sunlight to pump a CW carbon dioxide laser has been analyzed. Such a laser could be of interest for such applications as space communication and power transmission. In order to optically pump CO2 using sunlight, the intense vibrational-rotational absorption bands of CO2 in the 4.3 micron spectral region would have to be utilized. The total pumping power from sunlight can be calculated from the known data of the solar spectral irradiance outside the atmosphere and the infrared absorption by carbon dioxide at 4.3 microns. The pumping power is proportional to the collector area of …


Assessment Of Feasibility Of Proposed Bolted Connections For Tubular Structures, John Henry Tausch Nov 1977

Assessment Of Feasibility Of Proposed Bolted Connections For Tubular Structures, John Henry Tausch

Dissertations and Theses

The search for new and additional sources of energy -- from sun, wind, waves, and ocean currents -- is necessitating the development of structures in the open environment of the oceans as well as on land. The advantages of round or tubular members for use in such structures are shown; and to avoid the uncertainties of welded joints, two bolted connections are proposed and their feasibility explored.


An Automatic Rinse Tank Controller For Industrial Applications, Aliasghar Emami Jul 1974

An Automatic Rinse Tank Controller For Industrial Applications, Aliasghar Emami

Dissertations and Theses

This thesis describes an automatic Rinse Tank Control System used in detection and removal of contaminating agents from industrial plating rinse tanks. It automatically monitors the purity of the rinse water in sixteen separate rinse tanks, and permits fresh water to enter the tanks only when the conductivity of the rinse water in each tank exceeds a predetermined level. Its use will result in large savings in consumption of fresh water and the subsequent reduction in discharge of effluent to the treatment plants.