Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

George Fox University

2001

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Application Of Dynamic System Identification To Timber Beams - Part Ii, S T. Peterson, D I. Mclean, M D. Symans, David Pollock, W F. Cofer, R N. Emerson, Kenneth J. Fridley Jan 2001

Application Of Dynamic System Identification To Timber Beams - Part Ii, S T. Peterson, D I. Mclean, M D. Symans, David Pollock, W F. Cofer, R N. Emerson, Kenneth J. Fridley

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

In a companion paper, a method of global nondestructive evaluation (NDE) for identifying local damage and decay in timber beams was developed and verified analytically using a finite-element model of a timber beam. The previously presented method of damage localization employs experimental modal analysis and an algorithm that monitors changes in modal strain energy between the mode shapes of a damaged beam with respect to the undamaged state of the beam. In this second part of a two-part paper, experimental laboratory tests on simply supported timber beams are presented to verify the capabilities and determine the limitations of the proposed …


Application Of Dynamic System Identification To Timber Beams - Part I, S T. Peterson, D I. Mclean, M D. Symans, David Pollock, W F. Cofer, R N. Emerson, Kenneth J. Fridley Jan 2001

Application Of Dynamic System Identification To Timber Beams - Part I, S T. Peterson, D I. Mclean, M D. Symans, David Pollock, W F. Cofer, R N. Emerson, Kenneth J. Fridley

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

In this first part of a two-part paper, development of a method of dynamic system identification for timber beams is presented with an analytical verification of the method using a finite-element model. A method of global nondestructive evaluation for identifying local damage and decay in timber beams is investigated in this paper. Experimental modal analysis is used in conjunction with a previously developed damage localization algorithm. The damage localization algorithm utilizes changes in modal strain energy between the mode shapes of a calibrated model, representing the undamaged state of the beam of interest, and the experimentally obtained mode shapes for …