Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Clemson University

Theses/Dissertations

Modeling

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Multiscale Modeling And Gaussian Process Regression For Applications In Composite Materials, Joshua Arp Aug 2023

Multiscale Modeling And Gaussian Process Regression For Applications In Composite Materials, Joshua Arp

All Dissertations

An ongoing challenge in advanced materials design is the development of accurate multiscale models that consider uncertainty while establishing a link between knowledge or information about constituent materials to overall composite properties. Successful models can accurately predict composite properties, reducing the high financial and labor costs associated with experimental determination and accelerating material innovation. Whereas early pioneers in micromechanics developed simplistic theoretical models to map these relationships, modern advances in computer technology have enabled detailed simulators capable of accurately predicting complex and multiscale phenomena.

This work advances domain knowledge via two means: firstly, through the development of high-fidelity, physics-based finite …


Modeling Pattern Formation And Morphology Development In Polymer Networks, Yao Xiong Aug 2022

Modeling Pattern Formation And Morphology Development In Polymer Networks, Yao Xiong

All Dissertations

Topography and morphology have considerable impacts on the functionalities of soft materials in an entire range of applications from smart optics to tissue engineering. Adapting theoretical and computational approaches, we focus on the dynamics of pattern formation and morphology development in polymer networks. This dissertation starts with studying the dynamical control of pattern formation in confined thermo-responsive poly(N-isopropylacrylamide) (PNIPAAm) gel films. The patterns are formed due to mechanical instabilities. We perform a linear stability analysis and identify the limits of this analysis in predicting pattern formation in gels. We then study the restructuring between patterns and hysteresis phenomena …