Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Engineering

Environment And Response Of 3d-Encapsulated Mesenchymal Stem Cells To Mechanical Loading, Augustus Greenwood May 2024

Environment And Response Of 3d-Encapsulated Mesenchymal Stem Cells To Mechanical Loading, Augustus Greenwood

McKelvey School of Engineering Theses & Dissertations

This thesis explores the micromechanical environment induced when cyclically compressing hydrogels via finite element modeling and experimentally on the impact of loading on mesenchymal stem cells (MSCs) when encapsulated withing 3D hydrogel matrices. Degenerative joint diseases, characterized by cartilage degradation, present significant challenges due to cartilage's limited self-repair capacity. Innovative approaches, including stem cell-based therapies and engineered biomaterials, have emerged as promising strategies for cartilage repair and regeneration. This work specifically investigates the calibration of a bioreactor, the uniformity of load response across the hydrogel constructs via finite element modeling (FEM), and the stress response of MSCs subjected to various …


Elucidating The Mechanical And Transport Properties Of Lignin-Based Hydrogel Composites, Nicholas Gregorich May 2023

Elucidating The Mechanical And Transport Properties Of Lignin-Based Hydrogel Composites, Nicholas Gregorich

All Dissertations

The use of lignin in the fabrication of soft composites has become an emerging area of research in polymer science and polymer chemistry. These lignin-based materials present numerous benefits, notably, a reduction in the use of petroleum-based precursor, improved structural benefits to otherwise soft host polymers, as well as the inherent antimicrobial and antioxidant properties of lignin, making it suitable for biomaterials. Herein, we present two chemical reaction pathways of incorporating lignin that was fractionated and cleaned using the Aqueous Lignin Purification with Hot Agents (ALPHA) process into poly(vinyl alcohol) (PVA) hydrogel composites for aqueous-based separations. By leveraging the ALPHA …


Development Of Biomaterials For Drug Delivery, Raquel De Castro May 2021

Development Of Biomaterials For Drug Delivery, Raquel De Castro

Graduate Theses and Dissertations

Drug delivery systems (DDS) have highly evolved in the last decades with the development of hydrogels and nanoparticles. However, high systemic uptake, side effects, low bioavailability, and encapsulation efficiency continue to be a major hurdle faced by such DDSs.

Nanoparticles and hydrogels can be specifically designed for targeted DDSs to mitigate some of the problems. This dissertation aimed to design two DDSs for ocular drug delivery and one for cancer treatment. The first project sought to develop chitosan nanoparticles (Cs-NP) using PEGDA as a copolymer to encapsulate gentamicin (GtS) for ocular drug delivery. Cs-NPs contain positive charges that can interact …


Discrete Element Modeling Of Hydrogel Extrusion, Rohit Boddu Feb 2021

Discrete Element Modeling Of Hydrogel Extrusion, Rohit Boddu

Theses and Dissertations

Hydrogels are widely used in extrusion bioprinting as bioinks. Understanding how the hydrogel microstructure affects the bioprinting process aids researchers in predicting the behavior of biological components. Current experimental tools are unable to measure internal forces and microstructure variations during the bioprinting process. In this work, discrete element modeling was used to study the internal interactions and the elastic deformation of the molecular chains within hydrogel networks during the extrusion process. Two-dimensional models of hydrogel extrusions were created in Particle Flow Code (PFC; Itasca Co., Minneapolis, MN). For our model's calibration, hydrogel compression testing was used in which a cluster …


Development Of Water-Soluble Polyesters For Tissue Engineering Applications, Trent Gordon Nov 2020

Development Of Water-Soluble Polyesters For Tissue Engineering Applications, Trent Gordon

Electronic Thesis and Dissertation Repository

The development of tunable polymers has become increasingly important for both tissue engineering and drug delivery. This thesis investigates the development of water-soluble polyesters that contain both natural and synthetic components. These polymers offer tunable chemical structures, as well as functional groups for the conjugation of crosslinking moieties or cell signaling molecules. The first series of polymers was synthesized from poly(ethylene glycol) (PEG) and aspartic acid (Asp) via a titanium catalyzed transesterification method to provide polymers with molar masses of 12 kg/mol. After deprotection, the pendent functional groups of Asp were reacted with methacrylic, maleic, and itaconic anhydride to introduce …


Design Of Cell-Instructive Biomaterial Scaffolds For Intervertebral Disc Regeneration, Nadia Sharma Sep 2019

Design Of Cell-Instructive Biomaterial Scaffolds For Intervertebral Disc Regeneration, Nadia Sharma

Electronic Thesis and Dissertation Repository

Biomaterials-based therapies targeting the nucleus pulposus (NP) have the potential to promote regeneration and restore mechanical function to the intervertebral disc. This study developed composite hydrogels incorporating decellularized NP (DNP) and assessed its effects on viability, retention and differentiation of U-CH1 cells, an NP progenitor-like cell line. A minimal protocol was developed to decellularize bovine NP that reduced nuclear content while preserving key extracellular matrix components predicted to be favourable for bioactivity. The resulting DNP demonstrated cell-instructive effects, supporting U-CH1 viability and retention within the hydrogels, and promoted the differentiation of the progenitor-like cells towards an NP-like phenotype. These studies …


Optimization Of Conditions For Production Of Mechanically Strong Suckerin Protein Hydrogels, Autumn Furniss Jan 2019

Optimization Of Conditions For Production Of Mechanically Strong Suckerin Protein Hydrogels, Autumn Furniss

Williams Honors College, Honors Research Projects

Hydrogels are polymer networks with a large water content. Uses include biomedical applications like drug delivery, wound dressing, and more. Current natural hydrogels lack mechanical robustness. Squid ringed teeth (completely protein) have a modulus comparable to thermoplastics; adding this to hydrogels could improve modulus while maintaining biocompatibility.

Three experiments were performed: Hofmeister solubility study, SRT powder additive, and SRT aqueous solution. The first showed that LiCl solution without acetic acid dissolved the most SRT; overall LiCl dissolved more than all others. SRT as a powder additive increased the modulus of the hydrogels, however the error in the measurements make it …


Synthesis And Characterization Of Thermoresponsive Hydrogels Based On N-Isopropylacrylamide Crosslinked With 4,4′-Dihydroxybiphenyl Diacrylate, Shuo Tang, Martha Floy, Rohit Bhandari, Manjula Sunkara, Andrew J. Morris, Thomas D. Dziubla, J. Zach Hilt Dec 2017

Synthesis And Characterization Of Thermoresponsive Hydrogels Based On N-Isopropylacrylamide Crosslinked With 4,4′-Dihydroxybiphenyl Diacrylate, Shuo Tang, Martha Floy, Rohit Bhandari, Manjula Sunkara, Andrew J. Morris, Thomas D. Dziubla, J. Zach Hilt

Chemical and Materials Engineering Faculty Publications

A novel crosslinker [4,4′-dihydroxybiphenyl diacrylate (44BDA)] was developed, and a series of temperature-responsive hydrogels were synthesized through free radical polymerization of N-isopropylacrylamide (NIPAAm) with 44BDA. The temperature-responsive behavior of the resulting gels was characterized by swelling studies, and the lower critical solution temperature (LCST) of the hydrogels was characterized through differential scanning calorimetry. Increased content of 44BDA led to a decreased swelling ratio and shifted the LCST to lower temperatures. These novel hydrogels also displayed resiliency through multiple swelling–deswelling cycles, and their temperature responsiveness was reversible. The successful synthesis of NIPAAm-based hydrogels crosslinked with 44BDA has led to a …


Characterization Of Superabsorbent Polymers In Aluminum Solutions, Nicholas D. Macke, Matthew J. Krafcik, Kendra A. Erk Aug 2016

Characterization Of Superabsorbent Polymers In Aluminum Solutions, Nicholas D. Macke, Matthew J. Krafcik, Kendra A. Erk

The Summer Undergraduate Research Fellowship (SURF) Symposium

Over the past few decades, super absorbent polymers (SAPs) have been the topic of research projects all around the world due to their incredible ability to absorb water. They have applications in everything from disposable diapers to high performance concrete. In concrete, aqueous cations permeate the polymer network, reducing swelling and altering properties. One of these ions, aluminum, alters SAP properties by creating a stiff outer shell and greatly reducing absorbency, but these effects have not been well characterized. One method of characterizing the effects of aluminum on SAP hydrogels was performing gravimetric swelling tests to determine equilibrium water capacity …


Bioactive Poly(Beta-Amino Ester) Biomaterials For Treatment Of Infection And Oxidative Stress, Andrew L. Lakes Jan 2016

Bioactive Poly(Beta-Amino Ester) Biomaterials For Treatment Of Infection And Oxidative Stress, Andrew L. Lakes

Theses and Dissertations--Chemical and Materials Engineering

Polymers have deep roots as drug delivery tools, and are widely used in clinical to private settings. Currently, however, numerous traditional therapies exist which may be improved through use of polymeric biomaterials. Through our work with infectious and oxidative stress disease prevention and treatment, we aimed to develop application driven, enhanced therapies utilizing new classes of polymers synthesized in-house. Applying biodegradable poly(β-amino ester) (PBAE) polymers, covalent-addition of bioactive substrates to these PBAEs avoided certain pitfalls of free-loaded and non-degradable drug delivery systems. Further, through variation of polymer ingredients and conditions, we were able to tune degradation rates, release profiles, cellular …


Assembly And Deformation Of Amphiphilic Copolymers And Networks At Fluid Interfaces, Jinhye Bae Aug 2015

Assembly And Deformation Of Amphiphilic Copolymers And Networks At Fluid Interfaces, Jinhye Bae

Doctoral Dissertations

Surface tension generally plays a negligible role on macroscopic scales, but it is often the dominant force on nanometer to micrometer length-scales. The efforts of this dissertation are mainly focused on understanding the role that surface tension plays on sub-millimeter scale objects, especially on soft material systems, and how to utilize this phenomenon to assemble and deform objects. This dissertation addresses several phenomena of nano-and micron-sized objects at fluid interfaces. For nano-scale objects, amphiphilic block copolymer chains were used to explore interfacial behaviors due to their enhanced stability, mechanical properties, and tunability compared to other interfacially active materials such as …


Creasing Instability Of Hydrogels And Elastomers, Dayong Chen Aug 2014

Creasing Instability Of Hydrogels And Elastomers, Dayong Chen

Doctoral Dissertations

CREASING INSTABILITY OF HYDROGELS AND ELASTOMERS MAY 2014 DAYONG CHEN, B.S., TIANJIN UNIVERISTY M.S., TIANJIN UNIVERSITY M.S., UNIVERSITY OF MASSACHUSETTS AMHERST Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Ryan C. Hayward Soft polymers placed under compressive stress can undergo an elastic creasing instability in which sharp folds spontaneously form on the free surfaces. This process may play an important role in contexts as diverse as brain morphogenesis, failure of tires, and electrical breakdown of soft polymer actuators. While the creasing instability has been used for collotype printing since as early as the 1850s, the scientific appreciation of this instability …


Characterization Of Swelling Ratio And Water Content Of Hydrogels For Cartilage Engineering Applications, Emily E. Gill, Renay S.-C. Su, Julie C. Liu Aug 2014

Characterization Of Swelling Ratio And Water Content Of Hydrogels For Cartilage Engineering Applications, Emily E. Gill, Renay S.-C. Su, Julie C. Liu

The Summer Undergraduate Research Fellowship (SURF) Symposium

Due to the high prevalence of arthritis and cartilage-related injuries, tissue engineers are studying ways to grow cartilage tissue replacements. Resilin, an elastomeric protein found in insect cuticles, is known for its extraordinary resilience and elasticity. In previous studies, recombinant resilin-based hydrogels, or cross-linked protein networks, exhibited potential for use in cartilage tissue scaffolds. Our lab successfully developed resilin-based proteins with a sequence based on the mosquito gene and showed that resilin-based hydrogels possess mechanical properties of the same order of magnitude as native articular cartilage. In addition, these mechanical properties can be controlled by changing the protein concentration. To …


Stereolithography Of Poly(Ethylene Glycol) Hydrogels With Application In Tissue Engineering As Peripheral Nerve Regeneration Scaffolds, Karina Arcaute Jan 2008

Stereolithography Of Poly(Ethylene Glycol) Hydrogels With Application In Tissue Engineering As Peripheral Nerve Regeneration Scaffolds, Karina Arcaute

Open Access Theses & Dissertations

In recent years, rapid prototyping (RP) technologies initially developed to create prototypes prior to production for the automotive, aerospace, and other industries, have found applications in tissue engineering (TE). Several different RP technologies are being used to fabricate biocompatible 3D structures with controlled micro- and macro-scale characteristics. The focus of this research was to explore the capabilities of the RP technology, stereolithography (SL), for creating complex, 3D scaffolds with applications in TE using a photocrosslinkable biopolymer, poly(ethylene glycol) (PEG). The primary objective was to create an implantable multi-lumen nerve guidance conduit (NGC) for the regeneration of peripheral nerves.

Studies of …