Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 23 of 23

Full-Text Articles in Engineering

3d Experimental Studies Of Temperature And Crystallographic Effects On Creep And Strength In Rock Salt, Amirsalar Moslehy Dec 2023

3d Experimental Studies Of Temperature And Crystallographic Effects On Creep And Strength In Rock Salt, Amirsalar Moslehy

Doctoral Dissertations

Salt domes utilization as storage reservoirs in the energy sector has led to extensive studies on rock salt’s mechanical and geothermal behavior. These important facilities’ safety and serviceability rely on understanding rock salt’s compressive strength and creep behavior under various loading directions, water contents, in-situ stresses, and temperatures. Despite numerous studies on rock salt’s mechanical behavior in the literature, there are still many unanswered questions about rock salt’s behavior. This dissertation was aimed at utilizing state-of-the-art experimental techniques such as 3D synchrotron micro-computed tomography (SMT) and 3D x-ray diffraction (3DXRD) along with hundreds of compression and creep experiments to enhance …


Creep Behavior Of A Ti-Based Multi-Principal Element Alloy, Benjamin Elbrecht Aug 2022

Creep Behavior Of A Ti-Based Multi-Principal Element Alloy, Benjamin Elbrecht

All Theses

Abstract

The understanding of microstructural damage mechanisms is the foundation of better understanding existing materials and future material development. There are significant challenges to measuring these damage mechanisms in-situ as continuous observation of the state of the microstructure is difficult or impossible for many experimental setups. This thesis presents a method for measuring grain boundary sliding (GBS) and local strain concentrations in-situ via a Heaviside function based algorithm. GBS is the shearing of two grains along their shared grain boundary and is a common damage mechanism in creep which presents as a discontinuity that can be measured with a Heaviside …


Creep Behavior And Deformation Mechanisms Of Spark Plasma Sintered Oxide Ceramics For Aerospace Systems At 1300˚C - 1400˚C, David D. Swanson Dec 2021

Creep Behavior And Deformation Mechanisms Of Spark Plasma Sintered Oxide Ceramics For Aerospace Systems At 1300˚C - 1400˚C, David D. Swanson

Theses and Dissertations

The mechanical behavior of YAG and LuAG was investigated at elevated temperatures. The specific materials investigated in this work include high-purity, polycrystalline YAG, high-purity, polycrystalline LuAG, and two doped variants of YAG: 2at% Yb-doped, polycrystalline YAG and 2at% Er-doped, polycrystalline YAG. Several billets of each material were prepared and processed by means of spark plasma sintering (SPS). Many different sintering parameters were utilized in order to obtain materials with various physical properties and to identify the effects of sintering parameters on the average grain size of the resulting materials. The compressive creep behavior of these materials was investigated at 1300°C …


Role Of Eta Phase Evolution On Creep Properties Of Nickel Base Superalloys Used In Advanced Electric Power Generation Plants, Ninad Mohale Jan 2021

Role Of Eta Phase Evolution On Creep Properties Of Nickel Base Superalloys Used In Advanced Electric Power Generation Plants, Ninad Mohale

Dissertations, Master's Theses and Master's Reports

Advanced fossil energy power generation plants require materials that withstand high temperatures and corrosive environments. One such material that is used in steam turbines is Nimonic 263. It is a nickel-base superalloy that is principally strengthened by gamma primephase (Ni3(Ti, Al)) and has an L12structure. At extended times and at turbine operating temperatures however, eta (Ni3Ti) phase is known to form at the expense of gamma prime. Eta has a complex DO24structure and is the stable phase between 750°C and 900°C, but with slow kinetics of formation. Little is understood about eta …


Influence Of Rapid Solidification And Wrought Processing On Precipitation Strengthening And Deformation Mechanisms In Al-Sc-Zr Alloys, Yang Yang Jan 2020

Influence Of Rapid Solidification And Wrought Processing On Precipitation Strengthening And Deformation Mechanisms In Al-Sc-Zr Alloys, Yang Yang

Dissertations, Master's Theses and Master's Reports

Al-Sc-Zr alloys have drawn increasing attention in the last several decades due to their strengthening and coarsening resistance. In this study, solute concentrations of Sc and Zr were increased beyond their equilibrium solubilities without primary precipitate formation using melt-spinning. The melt-spun ribbon was metallurgically bonded into bulk shape using extrusion. With the proper aging treatment, the mechanical properties of the supersaturated melt-spun ribbon and extruded rod were found to be significantly higher than a baseline dilute alloy. Increased mechanical properties include microhardness, tensile strength at ambient-temperature, and compressive strength and threshold stress at and elevated-temperature. These increases were related to …


Molecular Dynamics Study Of Creep Deformation In Nickel-Based Superalloy, Sabila Kader Pinky Jan 2019

Molecular Dynamics Study Of Creep Deformation In Nickel-Based Superalloy, Sabila Kader Pinky

MSU Graduate Theses

The present study employs molecular dynamics simulations of Ni-based superalloy to investigate the creep behavior under uniaxial compression test. Dislocation dynamics is analyzed for the nickel-based single crystal superalloy with the presence of void and with varying the distribution of gamma-prime phase The results show that multiple-void systems are more prone to yield than single-void systems and single-void systems are more prone to yield than the system without void. From the simulations, it has been determined that the creep mechanism in Ni/Ni3Al is subject to change on the applied stress depending on the distribution of gamma-prime phases change. Dislocation behavior …


Reliability Of Lead-Free Solder Joints Under Combined Shear And Compressive Loads, Ian Bernander, Travis Dale, Yuvraj Singh, Ganesh Subbarayan Aug 2018

Reliability Of Lead-Free Solder Joints Under Combined Shear And Compressive Loads, Ian Bernander, Travis Dale, Yuvraj Singh, Ganesh Subbarayan

The Summer Undergraduate Research Fellowship (SURF) Symposium

In electronic assemblies, solder joints are used to create electrical connections, remove heat, and mechanically support the components. When an electronic device is powered on, the solder joints and the board they are attached to heat up, expanding at different rates. Due to the difference in expansion, shear stress is imposed on the solder joints. As the device is powered on and off, this shear stress can eventually fracture the solder joint, causing the device to fail. Therefore, to increase the lifespan of electronics, it is important to investigate the mechanical properties of solder alloys. The present study investigates how …


Creep Of Hi-Nicalon™ S Ceramic Fiber Tows At 1100°C In Air And In Silicic Acid-Saturated Steam, Logan M. Gumucio Jun 2018

Creep Of Hi-Nicalon™ S Ceramic Fiber Tows At 1100°C In Air And In Silicic Acid-Saturated Steam, Logan M. Gumucio

Theses and Dissertations

Innovations in SiC based ceramic matrix composites (CMCs) have yielded exceptional high-temperature properties and performance in aggressive oxidizing environments. These material characteristics provide potential avenues for future advancements in many applications where current metallic alloys perform near their operating temperature limits in a harsh environment. As steam (typically present in these environments) enters through cracks in the matrix of a SiC/SiC composite, it leaches Si and becomes saturated with silicic acid, Si(OH)4, prior to attacking the reinforcing SiC fibers. Therefore, it is paramount that a thorough understanding of the performance and durability of SiC fibers be obtained under …


Creep Of Hi-Nicalon™ S Ceramic Fiber Tows At 1000°C In Air And In Silicic Acid-Saturated Steam, Brian G. Kroeger Mar 2018

Creep Of Hi-Nicalon™ S Ceramic Fiber Tows At 1000°C In Air And In Silicic Acid-Saturated Steam, Brian G. Kroeger

Theses and Dissertations

Advanced SiC/SiC ceramic matrix composites (CMCs) are being considered for a variety of applications. Of interest is their ability to withstand exposure to high temperature in an aggressive oxidizing environment. The presence of steam creates such an environment. As steam traverses across a SiC/SiC composite and through cracks in the SiC matrix, it becomes saturated with silicic acid, Si(OH)4. It is essential to understand the long-term impacts and durability of SiC/SiC CMCs that have been exposed to such a demanding environment. The present research investigated creep of Hi-Nicalon™ S SiC fibers at 1000°C in air and in silicic …


Experimental And Computational Investigation Of High Entropy Alloys For Elevated-Temperature Applications, Haoyan Diao May 2017

Experimental And Computational Investigation Of High Entropy Alloys For Elevated-Temperature Applications, Haoyan Diao

Doctoral Dissertations

To create and design novel structural materials with enhanced creep-resistance, fundamental studies have been conducted on high-entropy alloys (HEAs), using (1) thermodynamic calculations, (2) mechanical tests, (3) neutron diffraction, (4) characterization techniques, and (5) crystal-plasticity finite-element modeling (CPFEM), to explore future candidates for next-generation power plants.

All the constituent binary and ternary systems of the Al-Cr-Cu-Fe-Mn-Ni and Al-Co-Cr- Fe-Ni systems were thermodynamically modeled within the whole composition range. Comparisons between the calculated phase diagrams and literature data are in good agreement. The AlxCrCuFeMnNi HEAs have disordered [face-centered-cubic (FCC) + body-centered-cubic (BCC)] crystal structures. Excessive alloying of the Al …


Microstructure Control And Correlation To Creep Properties In Grade 91 Steel Weldment After Thermo-Mechanical Treatments And An Fe-30cr-3al Alloy Strengthened By Fe2nb Laves Phase, Benjamin Allen Shassere Dec 2016

Microstructure Control And Correlation To Creep Properties In Grade 91 Steel Weldment After Thermo-Mechanical Treatments And An Fe-30cr-3al Alloy Strengthened By Fe2nb Laves Phase, Benjamin Allen Shassere

Doctoral Dissertations

Type IV cracking in weldments of steel pipes after creep deformation is a concern in modern fossil-fueled power plants. Two possible methods for minimizing or eliminating Type IV cracking will be discussed. The first method alters the initial microstructure of typical Grade 91 steel base metal before welding, while the second provides baseline microstructure characteristics and creep performance of a new alloy that is strengthened by the intermetallic Fe2Nb Laves phase. The initial microstructure of the Grade 91 steel can be controlled by Thermo-Mechanical Treatments, which aids in precipitation of fine (5-10 nm) MX particles in austenite before transformation to …


Temperature Dependent Mechanical Behavior Of Solid Acids, Ryan Scott Ginder Dec 2016

Temperature Dependent Mechanical Behavior Of Solid Acids, Ryan Scott Ginder

Doctoral Dissertations

Existing literature data on the creep behavior of superprotonic solid acids, which is important for their use in fuel cell applications, is scant and unreliable. Steady state creep behavior for the model material system cesium hydrogen sulfate (CHS) is probed using nanoindentation and corroborated using uniaxial compression testing. To facilitate nanoindentation creep result interpretation, a radial flow model of power law indentation creep is developed. This model is compared with the related model from Bower, et. al. for several pre-existing literature datasets showing that the nonlinear, steady state creep law underpinning both appears valid for power law indentation creep.


An Examination Of The Indentation Size Effect In Fcc Metals And Alloys From A Kinetics Based Perspective Using Nanoindentation, David Earl Stegall Oct 2016

An Examination Of The Indentation Size Effect In Fcc Metals And Alloys From A Kinetics Based Perspective Using Nanoindentation, David Earl Stegall

Mechanical & Aerospace Engineering Theses & Dissertations

The indentation size effect (ISE) in metals is described as the rise in hardness with decreasing depth of indentation and contradicts conventional plasticity behavior. The goal of this dissertation is to further examine the fundamental dislocation mechanisms that may be contributing to the so-called indentation size effect. In this work, we examined several metals and alloys including 99.999% Aluminum (SFE ~200 mJ/m2), 99.95% Nickel (SFE ~125 mJ/m2), 99.95% Silver (SFE ~22 mJ/m2), and three alloys, alpha brass 70/30 (SFE >10 mJ/m2), 70/30 nickel copper (SFE ~100 mJ/ …


Creep And Oxidation Of Hafnium Diboride-Based Ultra High Temperature Ceramics At 1500°C, Anthony J. Degregoria Dec 2015

Creep And Oxidation Of Hafnium Diboride-Based Ultra High Temperature Ceramics At 1500°C, Anthony J. Degregoria

Theses and Dissertations

Ultra high temperature ceramics (UHTCs) are leading candidates for aerospace structural applications in high temperature environments, including the leading edges of hypersonic aircraft and thermal protection systems for atmospheric re-entry vehicles. Before UHTCs can be used in such applications, their structural integrity and environmental durability must be assured, which requires a thorough understanding and characterization of their creep and oxidation behavior at relevant service temperatures.


Microstructures And Mechanical Behavior Of Nial-Strengthened Ferritic Alloys At Room And Elevated Temperatures, Zhiqian Sun May 2015

Microstructures And Mechanical Behavior Of Nial-Strengthened Ferritic Alloys At Room And Elevated Temperatures, Zhiqian Sun

Doctoral Dissertations

In order to improve the thermal efficiency and decrease the greenhouse gases emission, it is required to increase the steam temperature and pressure in fossil-energy power plants. In the United States, research has been performing in order to push steam temperature to 760 Celsius degree and steam pressure to 35 MPa. However, the highest operational temperature for current commercial heat-resistant ferritic steels is ~ 620 Celsius degree. In this sense, new advanced ferritic alloys with better creep resistance are needed, considering such service conditions in next-generation ultra-supercritical fossil-energy power plants.

Coherent B2-ordered NiAl-type precipitates have been employed to reinforce the …


Rheology Of Cross-Linked Polymers And Polymer Foams: Theory And Experimental Results, John Herman Jan 2015

Rheology Of Cross-Linked Polymers And Polymer Foams: Theory And Experimental Results, John Herman

Wayne State University Dissertations

Typical polymers have a time-dependent response to loading which results in stress relaxation or creep. Models using springs/dashpots or Volterra integrals are capable of predicting the material response, but place little or no emphasis on the reasoning behind the response. This research proposes a microscopic reasoning behind polymer chain movement, while developing a model to predict the creep and stress relaxation of a polymer foam. Based on the theorized slip/stick of polymer chains as they slide past each other, this model successfully predicts the behavior of a PMI polymer foam under tensile loads. This model lends insights into polymer microscopic …


Characterization Of The Fine-Scale Weld Deposit Microstructure And Its Influence On The Elevated Temperature Properties Of 2.25cr - 1mo - 0.25v Weldments In Heavy Wall Pressure Vessels, Dewey Joshua Burgess Dec 2014

Characterization Of The Fine-Scale Weld Deposit Microstructure And Its Influence On The Elevated Temperature Properties Of 2.25cr - 1mo - 0.25v Weldments In Heavy Wall Pressure Vessels, Dewey Joshua Burgess

Doctoral Dissertations

The research herein was conducted to characterize the fine-scale microstructure of 2.25Cr‑1Mo‑0.25V (22V) submerged arc weld deposits and to study the influence of the microstructure on creep behavior and reheat cracking susceptibility. Scanning electron microscopy and transmission electron microscopy examinations concentrated on carbide morphology and evolution as a function of time and temperature, since the majority of properties that are associated with 22V weld deposits are attributable to the carbide type and location throughout the microstructure.

Five distinct carbides were observed in the range of heat treatments studied: MC, M2C, M23C6, M7C3, and M6C. It was shown that each carbide …


Creep, Fatigue And Creep-Fatigue Interactions In Modified 9% Cr - 1% Mo (P91) Steels, Valliappa Kalyanasundaram May 2013

Creep, Fatigue And Creep-Fatigue Interactions In Modified 9% Cr - 1% Mo (P91) Steels, Valliappa Kalyanasundaram

Graduate Theses and Dissertations

Grade P91 steel, from the class of advanced high-chrome ferritic steels, is one of the preferred materials for many elevated temperature structural components. Creep-fatigue (C-F) interactions, along with oxidation, can accelerate the kinetics of damage accumulation and consequently reduce such components' life. Hence, reliable C-F test data is required for meticulous consideration of C-F interactions and oxidation, which in turn is vital for sound design practices. It is also imperative to develop analytical constitutive models that can simulate and predict material response under various long-term in-service conditions using experimental data from short-term laboratory experiments. Consequently, the major objectives of the …


Assessment Of The Kinetics Of Local Plastic Deformation Of Zr-2.5%Nb Candu Pressure Tube Material, Bipasha Bose Apr 2012

Assessment Of The Kinetics Of Local Plastic Deformation Of Zr-2.5%Nb Candu Pressure Tube Material, Bipasha Bose

Electronic Thesis and Dissertation Repository

Constant-load pyramidal indentation creep tests and high precision micro-indentation strain rate change tests were performed to assess the effect of indentation depth, irradiation damage and temperature on the mechanical anisotropy and local plastic deformation parameters of the Zr-2.5%Nb CANDU pressure tube material. Polished samples aligned normal to the transverse (TN), axial (AN) and radial (RN) directions of the pressure tube were irradiated with 8.5 MeV Zr+ ions to simulate the effect of neutron irradiation. Constant-load pyramidal indentation creep tests performed at 25ºC show that the average indentation stress increases with decreasing indentation depth and increasing levels of irradiation. The …


Computational And Experimental Study Of Structure-Property Relationships In Nial Precipitate-Strengthened Ferritic Superalloys, Shenyan Huang Dec 2011

Computational And Experimental Study Of Structure-Property Relationships In Nial Precipitate-Strengthened Ferritic Superalloys, Shenyan Huang

Doctoral Dissertations

Ferritic superalloys strengthened by coherent ordered NiAl B2-type precipitates are promising candidates for ultra-supercritical steam-turbine applications, due to their superior resistance to creep, coarsening, oxidation, and steam corrosion as compared to Cr ferritic steels at high temperatures. Combined computational and experimental tools have been employed to investigate the interrelationships among the composition, microstructure, and mechanical behavior, and provide insight into deformation micromechanisms at elevated temperatures.

Self and impurity diffusivities in a body-centered-cubic (bcc) iron are calculated using first-principles methods. Calculated self and impurity diffusivities compare favorably with experimental measurements in both ferromagnetic and paramagnetic states of bcc Fe. The calculated …


Study Of Deformation Behavior Of Nanocrystalline Nickel Using Nanoindentation Techniques, Changli Wang Aug 2010

Study Of Deformation Behavior Of Nanocrystalline Nickel Using Nanoindentation Techniques, Changli Wang

Doctoral Dissertations

Nanocrystalline materials with grain size less than 100 nm have been receiving much attention because of their unparallel properties compared with their microcrystalline counterparts. Because of its high hardness, nanocrystalline nickel has been used for MEMS. Long term thermomechnical properties and deformation mechanism at both ambient and elevated temperatures need to be evaluated which is vital for reliability of its applications as structural material.

In this thesis, nanoindentation creep of nanocrystalline nickel with an as-deposited grain size of 14 nm was characterized at elevated temperatures. The nanoindentation creep rate was observed to scale with temperature and applied load (or stress), …


Fracture Toughness, Crack-Growth-Rate And Creep Studies Of Alloy 276, Joydepp Pal Jan 2009

Fracture Toughness, Crack-Growth-Rate And Creep Studies Of Alloy 276, Joydepp Pal

UNLV Theses, Dissertations, Professional Papers, and Capstones

Austenitic nickel-base Alloy 276 had been proposed to be a candidate structural material within the purview of the nuclear hydrogen initiative program. A mechanistic understanding of high temperature tensile deformation of this alloy has already been presented in an earlier investigation. The current investigation has been focused on the evaluation of crack-growth behavior, fracture toughness, stress-corrosion-cracking and creep deformation of this alloy as functions of different metallurgical and mechanical variables. The results of crack-growth study under cyclic loading indicate that this alloy exhibited greater cracking tendency with increasing temperature at a constant load ratio (R). However, the effect of temperature …


High Energy Density Dielectrics For Symmetric Blumleins, Wayne Huebner, Shi C. Zhang Jul 2000

High Energy Density Dielectrics For Symmetric Blumleins, Wayne Huebner, Shi C. Zhang

Materials Science and Engineering Faculty Research & Creative Works

Multilayer, tape cast ceramics are being developed for use in large area, high voltage devices in order to achieve high specific energy densities (>106 J/m3) and physical size reduction. In particular, symmetric Blumleins are desired with the following properties:

  • High voltage hold off (≥ 300 kV)
  • High, nondispersive permittivity: ≈100 to 900
  • Ability to be fabricated into various shapes and sizes
  • Surface flashover inhibition at the edge
  • Ability to be triggered by surface flashover switching

The compositions being pursued are based on pure BaTiO3 dielectrics. Our approach is to add glass phase additions which result …