Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Blood Flow Regulates Atherosclerosis Progression And Regression, Morgan A. Schake May 2023

Blood Flow Regulates Atherosclerosis Progression And Regression, Morgan A. Schake

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Atherosclerosis is the most prevalent pathology of cardiovascular disease with no known cure. Despite the many systemic risk factors for atherosclerosis, plaques do not form randomly in the vasculature. Instead, they form around bifurcations and the inner curvature of highly curving arterial segments that contain so-called disturbed blood flow that is low in magnitude and multidirectional over the cardiac cycle. Conversely, straight, non-bifurcated arterial segments that contain moderate-to-high and unidirectional (i.e., normal) blood flow are protected from plaque development. Thus, blood flow is a key regulator of atherosclerosis that may be able to be leveraged to develop new therapeutics. Towards …


Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick Aug 2015

Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick

Doctoral Dissertations

The goal of this dissertation was to parse the roles of physical, mechanical and chemical cues in the phenotype plasticity of smooth muscle cells (SMCs) in atherosclerosis. We first developed and characterized a novel synthetic hydrogel with desirable traits for studying mechanotransduction in vitro. This hydrogel, PEG-PC, is a co-polymer of poly(ethylene glycol) and phosphorylcholine with an incredible range of Young’s moduli (~1 kPa - 9 MPa) that enables reproduction of nearly any tissue stiffness, exceptional optical and anti-fouling properties, and support for covalent attachment of extracellular matrix (ECM) proteins. To our knowledge, this combination of mechanical range, low …


Oxidized Phospholipids Regulation Of The Monocyte Recruitment Parthway In Human Aortic Endothelial Cells, Piao Jian Tan Aug 2015

Oxidized Phospholipids Regulation Of The Monocyte Recruitment Parthway In Human Aortic Endothelial Cells, Piao Jian Tan

Masters Theses

Low-density lipoprotein particles in blood plasma invade the endothelium and become oxidized, creating risk of CHD associated with atherosclerosis, the main underlying condition in coronary heart disease. Oxidation products of the phospholipid 1-palmitoyl- 2-arachidonoyl-sn-glycerol-3-phosphatidylcholine (PAPC) are bioactive components of minimally oxidized LDL that stimulate endothelial cells that line the artery, leading to monocyte binding and atherosclerosis. It is hypothesized that the regulation of the monocyte recruitment pathway by these oxidized phospholipids is mediated by the binding of OxPAPC to one or more mediating proteins. Human recombinant VEGFR2, GRP78, and EP2bind to OxPNB, a biotinylated analog of OxPAPC, demonstrated using Western …