Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 48

Full-Text Articles in Engineering

Modeling Powder Spreadability In Powder-Based Processes Using The Discrete Element Method, Austin T. Sutton, M. Hossein Sehhat, Ming C. Leu, Joseph W. Newkirk Jul 2024

Modeling Powder Spreadability In Powder-Based Processes Using The Discrete Element Method, Austin T. Sutton, M. Hossein Sehhat, Ming C. Leu, Joseph W. Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Powder-bed fusion (PBF) processes refer to a subset of Additive Manufacturing (AM) techniques where powder is spread on the build-plate before melting (by a laser or electron beam). While PBF processes are attractive due to their ability for realizing complex structures that are either difficult or impossible to create through conventional means, the parts fabricated with these techniques can exhibit defects such as pores, inclusions, and excessive surface roughness. To minimize these defects, much research has been dedicated towards process maturation by optimizing laser or electron beam parameters. However, these developmental efforts typically do not address the recoating process where …


Advancements And Challenges In Additively Manufactured Functionally Graded Materials: A Comprehensive Review, Suhas Alkunte, Ismail Fidan, Vivekanand Naikwadi, Shamil Gudavasov, Mohammad Alshaikh Ali, Mushfig Mahmudov, Seymur Hasanov, Muralimohan Cheepu Jan 2024

Advancements And Challenges In Additively Manufactured Functionally Graded Materials: A Comprehensive Review, Suhas Alkunte, Ismail Fidan, Vivekanand Naikwadi, Shamil Gudavasov, Mohammad Alshaikh Ali, Mushfig Mahmudov, Seymur Hasanov, Muralimohan Cheepu

Engineering Technology Faculty Publications

This paper thoroughly examines the advancements and challenges in the field of additively manufactured Functionally Graded Materials (FGMs). It delves into conceptual approaches for FGM design, various manufacturing techniques, and the materials employed in their fabrication using additive manufacturing (AM) technologies. This paper explores the applications of FGMs in diverse fields, including structural engineering, automotive, biomedical engineering, soft robotics, electronics, 4D printing, and metamaterials. Critical issues and challenges associated with FGMs are meticulously analyzed, addressing concerns related to production and performance. Moreover, this paper forecasts future trends in FGM development, highlighting potential impacts on diverse industries. The concluding section summarizes …


Additive Manufacturing Of Novel Lightweight Insulation Refractory With Hierarchical Pore Structures By Direct Ink Writing, Saisai Li, Jiaxuan Xin, Ruoyu Chen, Haiming Wen Jan 2024

Additive Manufacturing Of Novel Lightweight Insulation Refractory With Hierarchical Pore Structures By Direct Ink Writing, Saisai Li, Jiaxuan Xin, Ruoyu Chen, Haiming Wen

Materials Science and Engineering Faculty Research & Creative Works

A direct ink writing process using fly ash foaming slurries was employed for the additive manufacturing of lightweight mullite insulation refractory with hierarchical pore structures. The viscosity, thixotropy, and shear thinning behavior of the inks were analyzed to investigate the effect of the inorganic binder and dispersant of the foaming inks. A slurry exhibiting excellent rheological characteristics was identified, consisting of 45 wt% fly ash floating beads, 55 wt% water, 3.0 wt% additional dispersant, and 6.0 wt% additional binder. Furthermore, through the optimization of printing parameters such as printing pressure and printing speed, notable enhancements were achieved in the pore …


Characterization Of Interlayer Laser Shock Peening During Fused Filament Fabrication Of Polylactic Acid (Pla), Fabien Denise Dec 2023

Characterization Of Interlayer Laser Shock Peening During Fused Filament Fabrication Of Polylactic Acid (Pla), Fabien Denise

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

The field of additive manufacturing (AM) has gained a significant amount of popularity due to the increasing need for more sustainable manufacturing techniques and the adaptive development of complex product geometries. The problem is that AM parts routinely exhibit flaws or weaknesses that affect functionality or performance. Over the years, surface treatments have been developed to compensate certain flaws or weaknesses in manufactured products. Combining surface treatments with the modularity of additive manufacturing could lead to more adaptable and creative improvements of product functions in the future. The current work evaluates the feasibility of pursuing a new research axis in …


Investigation Of Deformation Behavior Of Additively Manufactured Aisi 316l Stainless Steel With In Situ Micro-Compression Testing, Fei Teng, Ching-Heng Shiau, Cheng Sun, Robert C. O'Brien, Michael D. Mcmurtrey Sep 2023

Investigation Of Deformation Behavior Of Additively Manufactured Aisi 316l Stainless Steel With In Situ Micro-Compression Testing, Fei Teng, Ching-Heng Shiau, Cheng Sun, Robert C. O'Brien, Michael D. Mcmurtrey

Materials Science and Engineering Faculty Publications and Presentations

Additive manufacturing techniques are being used more and more to perform the precise fabrication of engineering components with complex geometries. The heterogeneity of additively manufactured microstructures deteriorates the mechanical integrity of products. In this paper, we printed AISI 316L stainless steel using the additive manufacturing technique of laser metal deposition. Both single-phase and dual-phase substructures were formed in the grain interiors. Electron backscatter diffraction and energy-dispersive X-ray spectroscopy indicate that Si, Mo, S, Cr were enriched, while Fe was depleted along the substructure boundaries. In situ micro-compression testing was performed at room temperature along the [001] orientation. The dual-phase substructures …


Point Heat Source Correlation To Microstructural Evolution In Advanced Manufacturing, Mark Anderson May 2023

Point Heat Source Correlation To Microstructural Evolution In Advanced Manufacturing, Mark Anderson

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Although there are different ways that advanced manufacturing can be performed, the use of single-point heat sources has become the standard to control a final product’s properties. It is imperative to understand how the heat source used in the different advanced manufacturing processes affect the microstructure of interest. The intimate relationship between the heat source and microstructure allows for controlling and tailoring a part’s properties. Utilizing different microstructural analysis, the cross-correlation of various point heat sources to developed microstructure was conducted in this dissertation.

Laser powder bed fusion allows for unique print-to-part protocols, but the dynamics of the process makes …


Fast-, Light-Cured Scintillating Plastic For 3d-Printing Applications, Brian G. Frandsen, Michael Febbraro, Thomas Ruland, Theodore W. Stephens, Paul A. Hausladen, Juan J. Manfredi, James E. Bevins Mar 2023

Fast-, Light-Cured Scintillating Plastic For 3d-Printing Applications, Brian G. Frandsen, Michael Febbraro, Thomas Ruland, Theodore W. Stephens, Paul A. Hausladen, Juan J. Manfredi, James E. Bevins

Faculty Publications

Additive manufacturing techniques enable a wide range of possibilities for novel radiation detectors spanning simple to highly complex geometries, multi-material composites, and metamaterials that are either impossible or cost prohibitive to produce using conventional methods. The present work identifies a set of promising formulations of photocurable scintillator resins capable of neutron-gamma pulse shape discrimination (PSD) to support the additive manufacturing of fast neutron detectors. The development of these resins utilizes a step-by-step, trial-and-error approach to identify different monomer and cross-linker combinations that meet the requirements for 3D printing followed by a 2-level factorial parameter study to optimize the radiation detection …


Laser Powder Bed Fusion Of Molybdenum And Mo-0.1sic Studied By Positron Annihilation Lifetime Spectroscopy And Electron Backscatter Diffraction Method, Nathan E. Ellsworth, Joshua R. Machacek, Ryan A. Kemnitz, Cayla C. Eckley, Brianna M. Sexton, Joel S. Gearhart, Larry W. Burggraf Feb 2023

Laser Powder Bed Fusion Of Molybdenum And Mo-0.1sic Studied By Positron Annihilation Lifetime Spectroscopy And Electron Backscatter Diffraction Method, Nathan E. Ellsworth, Joshua R. Machacek, Ryan A. Kemnitz, Cayla C. Eckley, Brianna M. Sexton, Joel S. Gearhart, Larry W. Burggraf

Faculty Publications

Positron annihilation lifetime spectroscopy (PALS) has been used for the first time to investigate the microstructure of additively manufactured molybdenum. Despite the wide applicability of positron annihilation spectroscopy techniques to the defect analysis of metals, they have only been used sparingly to monitor the microstructural evolution of additively manufactured metals. Molybdenum and molybdenum with a dilute addition (0.1 wt%) of nano-sized silicon carbide, prepared via laser powder bed fusion (LPBF) at four different scan speeds: 100, 200, 400, and 800 mm/s, were studied by PALS and compared with electron backscatter diffraction analysis. The aim of this study was to clarify …


Additive Manufacturing Of (Mgconicuzn)O High-Entropy Oxide Using A 3d Extrusion Technique And Oxide Precursors, Ruoyu Chen, Saisai Li, Qingfeng Yan, Haiming Wen Jan 2023

Additive Manufacturing Of (Mgconicuzn)O High-Entropy Oxide Using A 3d Extrusion Technique And Oxide Precursors, Ruoyu Chen, Saisai Li, Qingfeng Yan, Haiming Wen

Materials Science and Engineering Faculty Research & Creative Works

This report presents an additive manufacturing approach, for the first time, to producing high-entropy oxides (HEOs) using a 3D extrusion-based technique with oxide precursors. The precursors were prepared by a wet chemical method from sulfates. Additives were utilized to optimize the rheological properties of the printing inks with these precursors, and the properties of the printed HEOs were improved by increasing the solid content of the inks. When ink with a solid content of 78 wt% was used for printing, the resulting HEO exhibited a relative density of 92% and a high dielectric constant after undergoing pressure less sintering at …


Performance Evaluation Of Composite Sandwich Structures With Additively Manufactured Aluminum Honeycomb Cores With Increased Bonding Surface Area, M. Rangapuram, S. K. Dasari, Joseph William Newkirk, K. Chandrashekhara, H. Misak, P. R. Toivonen, D. Klenosky, T. Unruh, J. Sam Jan 2023

Performance Evaluation Of Composite Sandwich Structures With Additively Manufactured Aluminum Honeycomb Cores With Increased Bonding Surface Area, M. Rangapuram, S. K. Dasari, Joseph William Newkirk, K. Chandrashekhara, H. Misak, P. R. Toivonen, D. Klenosky, T. Unruh, J. Sam

Materials Science and Engineering Faculty Research & Creative Works

Modern aerostructures, including wings and fuselages, increasingly feature sandwich structures due to their high-energy absorption, low weight, and high flexural stiffness. The face sheet of these sandwich structures are typically thin composite laminates with interior honeycombs made of Nomex or aluminum. Standard cores are structurally efficient, but their design cannot be varied throughout the structure. With additive manufacturing (AM) technology, these core geometries can be altered to meet the design requirements that are not met in standard honeycomb cores. This study used a modified aluminum honeycomb core, with increased surface area on the top and bottom, as the core material …


Additive Manufacturing Of Complexly Shaped Sic With High Density Via Extrusion-Based Technique – Effects Of Slurry Thixotropic Behavior And 3d Printing Parameters, Ruoyu Chen, Adam Bratten, Joshua Rittenhouse, Tian Huang, Wenbao Jia, Ming-Chuan Leu, Haiming Wen Oct 2022

Additive Manufacturing Of Complexly Shaped Sic With High Density Via Extrusion-Based Technique – Effects Of Slurry Thixotropic Behavior And 3d Printing Parameters, Ruoyu Chen, Adam Bratten, Joshua Rittenhouse, Tian Huang, Wenbao Jia, Ming-Chuan Leu, Haiming Wen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Additive manufacturing of dense SiC parts was achieved via an extrusion-based process followed by electrical-field assisted pressure-less sintering. The aim of this research was to study the effect of the rheological behavior of SiC slurry on the printing process and quality, as well as the influence of 3D printing parameters on the dimensions of the extruded filament, which are directly related to the printing precision and quality. Different solid contents and dispersant- Darvan 821A concentrations were studied to optimize the viscosity, thixotropy and sedimentation rate of the slurry. The optimal slurry was composed of 77.5 wt% SiC, Y2O3 and Al2O3 …


Thermal Post-Processing Of 3d Printed Polypropylene Parts For Vacuum Systems, Pierce Mayville, Aliaksei L. Petsiuk, Joshua M. Pearce Sep 2022

Thermal Post-Processing Of 3d Printed Polypropylene Parts For Vacuum Systems, Pierce Mayville, Aliaksei L. Petsiuk, Joshua M. Pearce

Michigan Tech Publications

Access to vacuum systems is limited because of economic costs. A rapidly growing approach to reduce the costs of scientific equipment is to combine open-source hardware methods with digital distributed manufacturing with 3D printers. Although high-end 3D printers can manufacture vacuum components, again, the cost of access to tooling is economically prohibitive. Low-cost material extrusion 3D printing with plastic overcomes the cost issue, but two problems arise when attempting to use plastic in or as part of vacuum systems: the outgassing of polymers and their sealing. To overcome these challenges, this study explores the potential of using post-processing heat treatments …


Ultrafast Stiffening Of Concentrated Thermoresponsive Mineral Suspensions, Sharu Bhagavathi Kandy, Iman Mehdipour, Narayanan Neithalath, Aditya Kumar, Mathieu Bauchy, Edward Garboczi, Samanvaya Srivastava, Torben Gaedt, Gaurav Sant Sep 2022

Ultrafast Stiffening Of Concentrated Thermoresponsive Mineral Suspensions, Sharu Bhagavathi Kandy, Iman Mehdipour, Narayanan Neithalath, Aditya Kumar, Mathieu Bauchy, Edward Garboczi, Samanvaya Srivastava, Torben Gaedt, Gaurav Sant

Materials Science and Engineering Faculty Research & Creative Works

Extrusion-based 3D printing with rapidly hardening polymeric materials is capable of building almost any conceivable structure. However, concrete, one of the most widely used materials for large-scale structural components, is generally based on inorganic binder materials like Portland cement. Unlike polymeric materials, a lack of precise control of the extent and rate of solidification of cement-based suspensions is a major issue that affects the ability to 3D-print geometrically complex structures. Here, we demonstrate a novel method for controllable-rapid solidification of concentrated mineral suspensions that contain a polymer binder system based on epoxy and thiol precursors as well as one or …


Flow In Additively Manufactured Super-Rough Channels, Samuel Altland, Xiaowei Zhu, Stephen Mcclain, Robert Kunz, Xiang Yang Jul 2022

Flow In Additively Manufactured Super-Rough Channels, Samuel Altland, Xiaowei Zhu, Stephen Mcclain, Robert Kunz, Xiang Yang

Mechanical and Materials Engineering Faculty Publications and Presentations

Metal additive manufacturing has enabled geometrically complex internal cooling channels for turbine and heat exchanger applications, but the process gives rise to large-scale roughness whose size is comparable to the channel height (which is 500 μm). These super-rough channels pose previously unseen challenges for experimental measurements, data interpretation and roughness modelling. First, it is not clear if measurements at a particular streamwise and spanwise location still provide accurate representation of the mean (time- and plane-averaged) flow. Second, we do not know if the logarithmic layer survives. Third, it is unknown how well previously developed rough-wall models work for these large-scale …


Tini-Based Bi-Metallic Shape-Memory Alloy By Laser-Directed Energy Deposition, Yitao Chen, Cesar Ortiz Rios, Braden Mclain, Joseph William Newkirk, Frank W. Liou Jun 2022

Tini-Based Bi-Metallic Shape-Memory Alloy By Laser-Directed Energy Deposition, Yitao Chen, Cesar Ortiz Rios, Braden Mclain, Joseph William Newkirk, Frank W. Liou

Materials Science and Engineering Faculty Research & Creative Works

In this study, laser-directed energy deposition was applied to build a Ti-rich ternary Ti–Ni–Cu shape-memory alloy onto a TiNi shape-memory alloy substrate to realize the joining of the multifunctional bi-metallic shape-memory alloy structure. The cost-effective Ti, Ni, and Cu elemental powder blend was used for raw materials. Various material characterization approaches were applied to reveal different material properties in two sections. The as-fabricated Ti–Ni–Cu alloy microstructure has the TiNi phase as the matrix with Ti2Ni secondary precipitates. The hardness shows no high values indicating that the major phase is not hard intermetallic. A bonding strength of 569.1 MPa was obtained …


Additive Manufacturing Of Continuous Carbon Fiber-Reinforced Sic Ceramic Composite With Multiple Fiber Bundles By An Extrusion-Based Technique, Ruoyu Chen, Adam Bratten, Joshua Rittenhouse, Ming-Chuan Leu, Haiming Wen Jan 2022

Additive Manufacturing Of Continuous Carbon Fiber-Reinforced Sic Ceramic Composite With Multiple Fiber Bundles By An Extrusion-Based Technique, Ruoyu Chen, Adam Bratten, Joshua Rittenhouse, Ming-Chuan Leu, Haiming Wen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Due to the high cost, complex preparation process and difficulty in structural design, the traditional methods for carbon fiber reinforced SiC ceramic composite preparation have great limitations. This paper presents a technique for the additive manufacturing multiple continuous carbon fiber bundle-reinforced SiC ceramic composite with core-shell structure using an extrusion-based technique. A conventional nozzle system was modified to print simultaneously a water based SiC paste with continuous carbon fibers. Different levels of binder contents were investigated to optimize the stickiness, viscosity, thixotropy and viscoelasticity of the paste. After sintering, SiC whiskers were generated on the surface of fiber, which is …


Plasma Spheroidization Of Gas-Atomized 304l Stainless Steel Powder For Laser Powder Bed Fusion Process, M. Hossein Sehhat, Austin T. Sutton, Chia-Hung Hung, Ben Brown, Ronald J. O'Malley, Jonghyun Park, Ming-Chuan Leu Jan 2022

Plasma Spheroidization Of Gas-Atomized 304l Stainless Steel Powder For Laser Powder Bed Fusion Process, M. Hossein Sehhat, Austin T. Sutton, Chia-Hung Hung, Ben Brown, Ronald J. O'Malley, Jonghyun Park, Ming-Chuan Leu

PSMRC Faculty Research

Particles of AISI 304L stainless steel powder were spheroidized by the induction plasma spheroidization process (TekSphero-15 spheroidization system) to assess the effects of the spheroidization process on powder and part properties. The morphology of both as-received and spheroidized powders was characterized by measuring particle size and shape distribution. The chemistry of powders was studied using inductively coupled plasma optical emission spectroscopy for evaluation of composing elements, and the powder’s microstructure was assessed by X-ray diffraction for phase identification and by electron backscattered diffraction patterns for crystallography characterization. The Revolution Powder Analyzer was used to quantify powder flowability. The mechanical properties …


Additive Manufacturing Of Miniaturized Peak Temperature Monitors For In-Pile Applications, Kiyo T. Fujimoto, Yaqiao Wu, David Estrada Nov 2021

Additive Manufacturing Of Miniaturized Peak Temperature Monitors For In-Pile Applications, Kiyo T. Fujimoto, Yaqiao Wu, David Estrada

Materials Science and Engineering Faculty Publications and Presentations

Passive monitoring techniques have been used for peak temperature measurements during irradiation tests by exploiting the melting point of well-characterized materials. Recent efforts to expand the capabilities of such peak temperature detection instrumentation include the development and testing of additively manufactured (AM) melt wires. In an effort to demonstrate and benchmark the performance and reliability of AM melt wires, we conducted a study to compare prototypical standard melt wires to an AM melt wire capsule, composed of printed aluminum, zinc, and tin melt wires. The lowest melting-point material used was Sn, with a melting point of approximately 230 °C, Zn …


Laser-Defined Graphene Strain Sensor Directly Fabricated On 3d-Printed Structure, Tyler M. Webb, Twinkle Pandhi, David Estrada Sep 2021

Laser-Defined Graphene Strain Sensor Directly Fabricated On 3d-Printed Structure, Tyler M. Webb, Twinkle Pandhi, David Estrada

Materials Science and Engineering Faculty Publications and Presentations

A direct-write method to fabricate a strain sensor directly on a structure of interest is reported. In this method, a commercial graphene ink is printed as a square patch (6 mm square) on the structure. The patch is dried at 100 °C for 30 min to remove residual solvents but the printed graphene remains in an insulative state. By scanning a focused laser (830 nm, 100 mW), the graphene becomes electrically conductive and exhibits a piezoresistive effect and a low temperature coefficient of resistance of −0.0006 °C−1. Using this approach, the laser defines a strain sensor pattern on …


Open Source 3d-Printable Planetary Roller Screw For Food Processing Applications, Marcello C. Guadagno, Jacob M. Loss, Joshua M. Pearce Apr 2021

Open Source 3d-Printable Planetary Roller Screw For Food Processing Applications, Marcello C. Guadagno, Jacob M. Loss, Joshua M. Pearce

Michigan Tech Publications

Historically, open source agriculture (OSA) was based on grassroots technology generally manufactured by hand tools or with manual machining. The rise of distributed digital manufacturing provides an opportunity for much more rapid lateral scaling of open source appropriate technologies for agriculture. However, the most mature distributed manufacturing area is plastic, which has limited use for many OSA applications. To overcome this limitation with design, this study reports on of a completely 3D-printable planetary roller screw linear actuator. The device is designed as a parametric script-based computer aided design (CAD) package to allow for the easy adaption for a number of …


Laser Powder Bed Fusion Of Nitihf High-Temperature Shape Memory Alloy: Effect Of Process Parameters On The Thermomechanical Behavior, Mohammadreza Nematollahi, Guher P. Toker, Keyvan Safaei, Alejandro Hinojos, S. Ehsan Saghaian, Othmane Benafan, Michael J. Mills, Haluk E. Karaca, Mohammad Elahinia Nov 2020

Laser Powder Bed Fusion Of Nitihf High-Temperature Shape Memory Alloy: Effect Of Process Parameters On The Thermomechanical Behavior, Mohammadreza Nematollahi, Guher P. Toker, Keyvan Safaei, Alejandro Hinojos, S. Ehsan Saghaian, Othmane Benafan, Michael J. Mills, Haluk E. Karaca, Mohammad Elahinia

Mechanical Engineering Faculty Publications

Laser powder bed fusion has been widely investigated for shape memory alloys, primarily NiTi alloys, with the goal of tailoring microstructures and producing complex geometries. However, processing high temperature shape memory alloys (HTSMAs) remains unknown. In our previous study, we showed that it is possible to manufacture NiTiHf HTSMA, as one of the most viable alloys in the aerospace industry, using SLM and investigated the effect of parameters on defect formation. The current study elucidates the effect of process parameters (PPs) on the functionality of this alloy. Shape memory properties and the microstructure of additively manufactured Ni-rich NiTiHf alloys were …


A Review Of Inkjet Printed Graphene And Carbon Nanotubes Based Gas Sensors, Twinkle Pandhi, Ashita Chandnani, Harish Subbaraman, David Estrada Oct 2020

A Review Of Inkjet Printed Graphene And Carbon Nanotubes Based Gas Sensors, Twinkle Pandhi, Ashita Chandnani, Harish Subbaraman, David Estrada

Materials Science and Engineering Faculty Publications and Presentations

Graphene and carbon nanotube (CNT)-based gas/vapor sensors have gained much traction for numerous applications over the last decade due to their excellent sensing performance at ambient conditions. Inkjet printing various forms of graphene (reduced graphene oxide or modified graphene) and CNT (single-wall nanotubes (SWNTs) or multiwall nanotubes (MWNTs)) nanomaterials allows fabrication onto flexible substrates which enable gas sensing applications in flexible electronics. This review focuses on their recent developments and provides an overview of the state-of-the-art in inkjet printing of graphene and CNT based sensors targeting gases, such as NO2, Cl2, CO2, NH3 …


Open Source Arc Analyzer: Multi-Sensor Monitoring Of Wire Arc Additive Manufacturing, Adam M. Pringle, Shane Oberloier, Aliaksei Petsiuk, Paul G. Sanders, Joshua M. Pearce Oct 2020

Open Source Arc Analyzer: Multi-Sensor Monitoring Of Wire Arc Additive Manufacturing, Adam M. Pringle, Shane Oberloier, Aliaksei Petsiuk, Paul G. Sanders, Joshua M. Pearce

Michigan Tech Publications

Low-cost high-resolution metal 3-D printing remains elusive for the scientific community. Low-cost gas metal arc wire (GMAW)-based 3-D printing enables wire arc additive manufacturing (WAAM) for near net shape applications, but has limited resolution due to the complexities of the arcing process. To begin to monitor and thus control these complexities, the initial designs of the open source GMAW 3-D printer have evolved to include current and voltage monitoring. Building on this prior work, in this study, the design, fabrication and use of the open source arc analyzer is described. The arc analyzer is a multi-sensor monitoring system for quantifying …


Parametric Nasopharyngeal Swab For Sampling Covid-19 And Other Respiratory Viruses: Open Source Design, Sla 3-D Printing And Uv Curing System, Nicole Gallup, Adam M. Pringle, Shane Oberloier, Nagendra G. Tanikella, Joshua M. Pearce Oct 2020

Parametric Nasopharyngeal Swab For Sampling Covid-19 And Other Respiratory Viruses: Open Source Design, Sla 3-D Printing And Uv Curing System, Nicole Gallup, Adam M. Pringle, Shane Oberloier, Nagendra G. Tanikella, Joshua M. Pearce

Michigan Tech Publications

Access to nasopharyngeal swabs for sampling remain a bottleneck in some regions for COVID-19 testing. This study develops a distributed manufacturing solution using only an open source manufacturing tool chain consisting of two types of open source 3-D printing and batch UV curing, and provides a parametric fully free design of a nasopharyngeal swab. The swab was designed using parametric OpenSCAD in two components (a head with engineered break point and various handles), which has several advantages: i) minimizing print time on relatively slow SLA printers, ii) enabling the use of smaller print volume open source SLA printers, iii) reducing …


Open Source High-Temperature Reprap For 3-D Printing Heat-Sterilizable Ppe And Other Applications, Noah G. Skrzypczak, Nagendra G. Tanikella, Joshua M. Pearce Oct 2020

Open Source High-Temperature Reprap For 3-D Printing Heat-Sterilizable Ppe And Other Applications, Noah G. Skrzypczak, Nagendra G. Tanikella, Joshua M. Pearce

Michigan Tech Publications

Thermal sterilization is generally avoided for 3-D printed components because of the relatively low deformation temperatures for common thermoplastics used for material extrusion-based additive manufacturing. 3-D printing materials required for high-temperature heat sterilizable components for COVID-19 and other applications demands 3-D printers with heated beds, hot ends that can reach higher temperatures than polytetrafluoroethylene (PTFE) hot ends and heated chambers to avoid part warping and delamination. There are several high temperature printers on the market, but their high costs make them inaccessible for full home-based distributed manufacturing required during pandemic lockdowns. To allow for all these requirements to be met …


Plastic Recycling In Additive Manufacturing: A Systematic Literature Review And Opportunities For The Circular Economy, Fabio A. Cruz Sanchez, Hakim Boudaoud, Mauricio Camargo, Joshua M. Pearce Aug 2020

Plastic Recycling In Additive Manufacturing: A Systematic Literature Review And Opportunities For The Circular Economy, Fabio A. Cruz Sanchez, Hakim Boudaoud, Mauricio Camargo, Joshua M. Pearce

Michigan Tech Publications

The rapid technical evolution of additive manufacturing (AM) enables a new path to a circular economy using distributed recycling and production. This concept of Distributed Recycling via Additive Manufacturing (DRAM) is related to the use of recycled materials by means of mechanical recycling process in the 3D printing process chain. This paper aims to examine the current advances on thermoplastic recycling processes via additive manufacturing technologies. After proposing a closed recycling global chain for DRAM, a systematic literature review including 92 papers from 2009 to 2019 was performed using the scopus, web of science and springer databases. This work examines …


Wavelength Decomposition Of Hybrid Additive Manufacturing Power Signals And Their Relationship With Surface Integrity, Xingtao Wang Jul 2020

Wavelength Decomposition Of Hybrid Additive Manufacturing Power Signals And Their Relationship With Surface Integrity, Xingtao Wang

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Additive Manufacturing (AM) has been a promising manufacturing technology in industrial applications and gained a massive amount of attention from researchers all over the world. Directed Energy Deposition (DED) is an AM process in which focused thermal energy is used to fuse materials by melting as they are deposited. One of the most significant challenges involved in current metal AM processes is improving repeatability and consistency. Substantial effort has already been invested in this area of research.

In this dissertation, a milling tool not only played a role in subtractive manufacturing but also acted as a method of monitoring the …


Open-Source Digitally Replicable Lab-Grade Scales, Benjamin R. Hubbard, Joshua M. Pearce Jun 2020

Open-Source Digitally Replicable Lab-Grade Scales, Benjamin R. Hubbard, Joshua M. Pearce

Michigan Tech Publications

This study provides designs for a low-cost, easily replicable open-source lab-grade digital scale that can be used as a precision balance. The design is such that it can be manufactured for use in most labs throughout the world with open-source RepRap-class material extrusion-based 3-D printers for the mechanical components and readily available open-source electronics including the Arduino Nano. Several versions of the design were fabricated and tested for precision and accuracy for a range of load cells. The results showed the open-source scale was found to be repeatable within 0.05 g with multiple load cells, with even better precision (0.005 …


Conversion Of Self-Contained Breathing Apparatus Mask To Open Source Powered Air-Purifying Particulate Respirator For Fire Fighter Covid-19 Response, Benjamin R. Hubbard, Joshua M. Pearce Jun 2020

Conversion Of Self-Contained Breathing Apparatus Mask To Open Source Powered Air-Purifying Particulate Respirator For Fire Fighter Covid-19 Response, Benjamin R. Hubbard, Joshua M. Pearce

Michigan Tech Publications

To assist firefighters and other first responders to use their existing equipment for respiration during the COVID-19 pandemic without using single-use, low-supply, masks, this study outlines an open source kit to convert a 3M-manufactured Scott Safety self-contained breathing apparatus (SCBA) into a powered air-purifying particulate respirator (PAPR). The open source PAPR can be fabricated with a low-cost 3-D printer and widely available components for less than $150, replacing commercial conversion kits saving 85% or full-fledged proprietary PAPRs saving over 90%. The parametric designs allow for adaptation to other core components and can be custom fit specifically to fire-fighter equipment, including …


Open Source High-Temperature Reprap For 3-D Printing Heat-Sterilizable Ppe And Other Applications, Noah G. Skrzypczak, Nagendra Gautam Tanikella, Joshua M. Pearce May 2020

Open Source High-Temperature Reprap For 3-D Printing Heat-Sterilizable Ppe And Other Applications, Noah G. Skrzypczak, Nagendra Gautam Tanikella, Joshua M. Pearce

Michigan Tech Publications

Thermal sterilization is generally avoided for 3-D printed components because of the relatively low deformation temperatures for common thermoplastics used for material extrusion-based additive manufacturing. 3-D printing materials required for high-temperature heat sterilizable components for COVID-19 and other applications demands 3-D printers with heated beds, hot ends that can reach higher temperatures than polytetrafluoroethylene (PTFE) hot ends and heated chambers to avoid part warping and delamination. There are several high temperature printers on the market, but their high costs make them inaccessible for full home-based distributed manufacturing required during pandemic lockdowns. To allow for all these requirements to be met …