Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 34

Full-Text Articles in Engineering

Synthesis And Characterization Of Microporous And Mesoporous Zeolites From Flyash For Heavy Metal Removal From Wastewater, Saeed Golbad Dec 2016

Synthesis And Characterization Of Microporous And Mesoporous Zeolites From Flyash For Heavy Metal Removal From Wastewater, Saeed Golbad

Theses and Dissertations

Class F fly ash was hydrothermally modified in one- and two-step processes to prepare zeolites with enhanced adsorption characteristics. Highly crystalline X type zeolite and hydroxy sodalite were targeted as microporous and mesoporous zeolite and were successfully synthesized using fly ash precursor by adjusting Si/Al molar ratio in reaction mixture. The heavy metal removal performance of the obtained fly ash-based zeolites was investigated in batch Pb2+ adsorption experiments.

Lead (Pb2+) is a positively charged toxic pollutant that can be present in surface water and industrial wastewater and may cause harmful physiological effects to human. As a result, standards for water …


Corrosion Of Aluminum Current Collector In Cost Effective Rechargeable Lithium-Ion Batteries, Shengyi Li Dec 2016

Corrosion Of Aluminum Current Collector In Cost Effective Rechargeable Lithium-Ion Batteries, Shengyi Li

Theses and Dissertations

Rechargeable lithium ion batteries (LIB) have been widely used as commercial energy storage systems for portable equipment, electronic devices and high power applications (e.g. electronic vehicles). One issue with the commercialized LIB is that expensive, highly toxic and flammable organic solvents are used in the electrolyte and the fabrication process of electrodes. The toxic organic based solvents increase the production cost and lead to significant safety concerns in the event of a battery overcharge or short circuit. The recent development of “green manufacturing” technology allows manufacturers to replace the organic solvents used in the cathode coating process by aqueous based …


High Temperature Oxidation Of Alumina Forming Cast Austenitic Stainless Steels Within An Environment Of Pure Steam, Elmer A. Prenzlow Dec 2016

High Temperature Oxidation Of Alumina Forming Cast Austenitic Stainless Steels Within An Environment Of Pure Steam, Elmer A. Prenzlow

Theses and Dissertations

Steam cracking of hydrocarbons in the petrochemical industry is a multibillion dollar industry. The processes performed in these plants create byproducts that negatively affect the integrity of stainless steel piping through high temperature corrosion. Alloys used presently in industry rely on the formation of chromium oxide (chromia) as a protective layer between the bulk metal pipe and chemical byproducts. However, chromia can become susceptible to attack from aggressive species such as carbon, water vapor, and sulfur compounds, thus creating a need for a better protection method.

A new series of austenitic stainless steels have been developed in recent years that, …


Microstructure, Wetting Angle And Corrosion Of Aluminum-Silicon Alloys, Shvetashva Suri Dec 2016

Microstructure, Wetting Angle And Corrosion Of Aluminum-Silicon Alloys, Shvetashva Suri

Theses and Dissertations

In this study the effect of composition, surface roughness and water droplet size on contact angle and corrosion properties of cast Aluminum-Silicon alloys containing Si from 5% to 50% have been examined. The water contact angle was measured on a given sample using a goniometer. In addition, the effect of surface roughness and droplet size on contact angle has been measured for alloys at a fixed composition. The microstructures can be found in this report with sizes of primary and eutectic Silicon as well as inter-particle spacing between Silicon. Contact angle measurements are accompanied with a photographic validation of the …


Aesthetic Coatings For Concrete Bridge Components, Brent Kriha Dec 2016

Aesthetic Coatings For Concrete Bridge Components, Brent Kriha

Theses and Dissertations

This thesis evaluated the durability and aesthetic performance of coating systems for utilization in concrete bridge applications. The principle objectives of this thesis were: 1) Identify aesthetic coating systems appropriate for concrete bridge applications; 2) Evaluate the performance of the selected systems through a laboratory testing regimen; 3) Develop guidelines for coating selection, surface preparation, and application.

A series of site visits to various bridges throughout the State of Wisconsin provided insight into the performance of common coating systems and allowed problematic structural details to be identified. To aid in the selection of appropriate coating systems, questionnaires were distributed to …


Degradation Of Carbon Fiber Reinforced Polymer And Graphite By Laser Heating, Nicholas C. Herr Sep 2016

Degradation Of Carbon Fiber Reinforced Polymer And Graphite By Laser Heating, Nicholas C. Herr

Theses and Dissertations

The availability of high power, diode pumped solid state and fiber lasers at powers 10 kW and shorter wavelengths (1.07 micrometer) has invigorated the development of tactical laser weapons. This shift to tactical missions greatly increases the variety of potential targets including carbon fiber reinforced polymers and related materials. The complexity of laser-material interactions has driven a historical reliance on live-fire testing and empirical models, but this becomes more difficult as the number of target materials grow. This dissertation combines thermal imagery and existing thermal models of the fire response of composite materials to develop a hybrid modeling approach of …


Corrosion Fatigue Crack Growth Behavior At Notched Hole In 7075-T6 Under Different Biaxial Stress Ratios, Khalid A. Alghamdi Sep 2016

Corrosion Fatigue Crack Growth Behavior At Notched Hole In 7075-T6 Under Different Biaxial Stress Ratios, Khalid A. Alghamdi

Theses and Dissertations

This thesis presents the results of a study to quantify the effects of biaxial loading on fatigue crack behavior in both air and saltwater (3.5% NaCl) environments from pre-cracked notched circular hole in a 7075-T6 cruciform specimen using a fracture mechanics approach. With stress ratio of R = 0.5, the crack growth behavior was investigated under fatigue loading with 0.5, 0, -0.5, and -1 biaxial stress ratio lambda. The crack propagation was monitored using optical microscopy. Finite Element Analysis was performed using the different stress ranges and stress ratios with various crack sizes to compute of stress intensity factors (delta …


Effect Of Stress Ratio On Fatigue Crack Growth Rate At Notched Hole In 7075-T6 Aluminum Alloy Under Biaxial Fatigue, Reja Alshahrani Sep 2016

Effect Of Stress Ratio On Fatigue Crack Growth Rate At Notched Hole In 7075-T6 Aluminum Alloy Under Biaxial Fatigue, Reja Alshahrani

Theses and Dissertations

This research investigates the behavior of fatigue crack growth rate in both laboratory air and saltwater (3.5% NaCl) environments for notched cruciform specimen made from 7075-T6 aluminum alloy sheet at different stress ratios. With biaxility ratio of 1, and frequency of applied load of 10 Hz, the crack growth behavior was investigated under in-plane biaxial tension-tension fatigue with 0.1, 0.5, 0.7 stress ratios and then compared them to study the effect of stress ratio on the crack growth rate. Finite Element Analysis (FEA) was used to calculate cyclic variation of stress intensity factors (delta K) at the crack tips. The …


Design Maps For Fracture Resistant Functionally Graded Materials, Muhammad Ridwan Murshed Aug 2016

Design Maps For Fracture Resistant Functionally Graded Materials, Muhammad Ridwan Murshed

Theses and Dissertations

The objective of this research is to generate design maps to identify functionally graded microstructures with enhanced fracture toughness. Several Functionally Graded Materials (FGMs) with an edge crack and membrane loading are considered and the resulting J-integral values are computed numerically using Finite Element Analysis. In order to capture the resulting stress fields accurately, Barsoum elements are used in the vicinity of the crack tip and the simulations are carried out for several crack lengths (a) and material contrasts (κ). The averages of the J-integral values are used to determine the normalized Stress Intensity Factors which are then benchmarked with …


Representative Volume Element (Rve) Finite-Element Analysis (Fea) Of Al Metal-Matrix Composites, Yuzhe Cao Aug 2016

Representative Volume Element (Rve) Finite-Element Analysis (Fea) Of Al Metal-Matrix Composites, Yuzhe Cao

Theses and Dissertations

ABSTRACT

REPRESENTATIVE VOLUME ELEMENT (RVE) FINITE-ELEMENT ANALYSIS

(FEA) OF AL METAL-MATRIX COMPOSITES

by

Yuzhe Cao

The University of Wisconsin-Milwaukee, 2016

Under the Supervision of Professor Chang-Soo Kim

Metal matrix composites reinforced by particles (a.k.a particle reinforced metal matrix composites, PRMMCs) could be suitable for a large number of applications with their enhanced mechanical properties. These composites generally consist of a base metal filled with hard/strong particles of which physical and mechanical properties very different from those of the matrix. These particles are intended to improve the properties of the base material including wear resistance, damping properties, and mechanical strength. Aluminum …


Advanced Self-Healing Polymer Composites For Wind Turbine Blades, Arun Kumar Koralagundi Matt Aug 2016

Advanced Self-Healing Polymer Composites For Wind Turbine Blades, Arun Kumar Koralagundi Matt

Theses and Dissertations

Wind energy is one of the prime sources of energy among the renewable sources of energy. Wind power has been one of the most promising sources of long-term, clean energy. Materials and design approach in commercial wind turbines have not seen a momentous change in the recent years. In this study, an intriguing bio-mimetic design approach is sought after, which is to heal damages as they arise in a composite material. Self-healing material systems in wind turbine blades have the potential to fulfill the requirement as an added safety mechanism to heal damages and prevent catastrophic failures. Effectively supplying healing …


Phase Sensitive Thermography Of Magnetostrictive Materials Under Periodic Excitations, Peng Yang Aug 2016

Phase Sensitive Thermography Of Magnetostrictive Materials Under Periodic Excitations, Peng Yang

Theses and Dissertations

The use of giant magnetostrictive materials in actuator and sensor applications is still relatively new. Giant magnetostrictive materials, such as Terfenol-D, are unique in producing large deformation under a magnetic field. Applications of these materials in solid state actuators and transducers may require more knowledge on the interaction between geometry and material properties for a specific design. In order to gain more understanding of the magnetostriction mechanism, phase sensitive or lock-in thermography has been used to study Terfenol-D. Thermography is useful in that it allows for full field measurement of the surface of an object with a relatively simple setup. …


Rational Design Of Cathode Materials For High Performance Lithium-Sulfur Batteries, Xi Chen Aug 2016

Rational Design Of Cathode Materials For High Performance Lithium-Sulfur Batteries, Xi Chen

Theses and Dissertations

Sulfur, one of most promising cathode candidates for next-generation lithium ion batteries, shows a limited cycling performance due to its shuttling effect, low conductivity, self-discharge and volume expansion during lithiation and delithiation process. According to the operation principles, failure mechanism, and recent progress on lithium-sulfur batteries, here we developed several scalable and rational synthesis methods for high performance cathode materials. We dissolved commercial sulfur to anhydrous ethylenediamine (EDA) to form an EDA-S precursor, and then we reduced the sulfur particles size at conductive carbon black substrate. The 70% theoretical capacity of sulfur cathode battery was obtained. We also melted commercial …


Nano-Crystalline Metal Matrix Nano-Composites Reinforced By Graphene And Alumina: Effect Of Reinforcement Properties And Concentration On Mechanical Behavior, Meysam Tabandeh Khorshid Aug 2016

Nano-Crystalline Metal Matrix Nano-Composites Reinforced By Graphene And Alumina: Effect Of Reinforcement Properties And Concentration On Mechanical Behavior, Meysam Tabandeh Khorshid

Theses and Dissertations

Metal matrix composites (MMCs) and Metal Matrix Nano-composites (MMNCs) are promising materials for a number of aerospace, defense, and automobile applications. Among all MMCs and MMNCs, aluminum is the most widely used matrix due to its low density coupled with high stiffness, high specific strength, high specific modulus and low thermal expansion coefficient. While high strengths have been shown in MMCs, they are known to have very limited ductility. However, there are indications that reducing reinforcement size to the nanoscale may improve strain to failure in addition to increase strength. Reducing grain size to the nanoscale has been found to …


Microfacet Wavelength Scaling Of The Brdf, Samuel E. Freda Jun 2016

Microfacet Wavelength Scaling Of The Brdf, Samuel E. Freda

Theses and Dissertations

The bidirectional reflectance distribution function (BRDF) describes realistic scattering of light off materials by relating incident irradiance to outbound radiance. One popular class of BRDF models assumes a surface is comprised of tiny microfacets. The drawback of microfacet BRDFs is that they often no not contain specific material parameters and neglect wavelength effects. Wave optics BRDF expressions, however, can describe wavelength effects at the expense of being more computationally cumbersome. Previous work of following a Beckmann-Kirchhoff derivation of BRDF, then relating wave optics BRDF coordinates to microfacet coordinates led to a complicated, but versatile, BRDF. In this work, the infinite …


The Effects Of Ionizing Radiation And Oxidizing Species On Strains Of Deinococcus Radiodurans Lacking Endogenous Oxidative Protection Methods, Dylan L. Klawuhn Jun 2016

The Effects Of Ionizing Radiation And Oxidizing Species On Strains Of Deinococcus Radiodurans Lacking Endogenous Oxidative Protection Methods, Dylan L. Klawuhn

Theses and Dissertations

Multiple strains of Deinococcus radiodurans were transformed, creating knockout mutations in genes responsible for manganese ion transport, manganese and copper/zinc super-oxide dismutase, and bacillithiol synthesis. These mutated strains were then irradiated with ~20,000 Gys. The results showed that the mutated strains had a higher sensitivity to ionizing radiation, those responsible for bacillithiol synthesis having an increase in sensitivity 3000 times more than wild type Deinococcus radiodurans. In addition to radiation the mutated strains were also exposed to paraquat, an oxidizing herbicide. Strains missing manganese super-oxide dismutase showed increased sensitivity.


Study Of Ceria Nanoparticles Synthesis And The Performance Of Nano-Ceria Coating For High Temperature Oxidation Resistance In Combustion Atmosphere, Lingke Mao May 2016

Study Of Ceria Nanoparticles Synthesis And The Performance Of Nano-Ceria Coating For High Temperature Oxidation Resistance In Combustion Atmosphere, Lingke Mao

Theses and Dissertations

Ceria (CeO2 ) nanoparticles were synthesized by the microemulsion method with Bis(2-ethylhexyl) Sulfosuccinate Sodium Salt (AOT) as the surfactant. Stirring speed during synthesis was used to optimize the process and a precipitation process was applied to dilute the surfactant. The prepared ceria nanoparticles were characterized by x-ray diffraction (XRD) and transmission electron microscopy (TEM). As the result, non-agglomerated and time-stable ceria nanoparticles were obtained with the average particles size of 2-3 nanometers. Stainless steel 316L substrates were coated by a dipping method with the help of a slide motor which provided constant speed and uniform coating layers. Both coated and …


The Effective Use Of Coal Combustion Products (Ccps) In Ashphalt Pavements, Clayton J. Cloutier May 2016

The Effective Use Of Coal Combustion Products (Ccps) In Ashphalt Pavements, Clayton J. Cloutier

Theses and Dissertations

Hot-Mix Asphalt (HMA) is one of the most widely used construction materials. The National Asphalt Paving Association (NAPA) estimated that there are over 2.6 million miles of roadway surfaces paved in the United States and 94% of these roads are paved with asphalt. NAPA also estimates that approximately 550 million tons of asphalt worth over $30 billion a year is produced in the United States. At such a huge production rate, innovative solutions need to be developed so that asphalt pavements last longer and can also reduce the production and maintenance costs. Producing sustainable asphalt materials can provide for improved …


In-Situ Synthesis Of Aluminum- Titanium Diboride Metal Matrix Hybrid Nanocomposite, Afsaneh Dorri Moghdam May 2016

In-Situ Synthesis Of Aluminum- Titanium Diboride Metal Matrix Hybrid Nanocomposite, Afsaneh Dorri Moghdam

Theses and Dissertations

Metal matrix nanocomposites (MMNC’s) are reported to have improved mechanical, thermal and electrical properties as compared to their respective base alloys. To date, these materials have been synthesized mainly by powder metallurgy or deformation processing. Solidification synthesis of MMNCs is a promising method, capable of economically producing large and complex shapes, however technical challenges including nanoparticle agglomeration, and poor interfacial strength have hindered the adoption of this technology. In-situ processing methods, in which the reinforcements are synthesized in liquid metals, typically via exothermic reactions offer the potential for improved dispersion and interfacial bonding between the reinforcement and the matrix, however …


Synthesis And Performance Analysis Of Polyurethane Foam Nanocomposite For Arsenic Removal From Drinking Water, Faten Bakri Hussein May 2016

Synthesis And Performance Analysis Of Polyurethane Foam Nanocomposite For Arsenic Removal From Drinking Water, Faten Bakri Hussein

Theses and Dissertations

Water contamination by various heavy metal pollutants such as, Lead, Arsenic, Cadmium, and Mercury, have severe toxic effects on living organisms and humans. High concentrations of arsenic in drinking water cause serious damage to the central and peripheral nervous systems, as well as, the dermal, cardiovascular, gastrointestinal, and respiratory systems. Arsenic contamination of ground water poses a substantial concern in many countries throughout the world, including the United States.

Considerable research work, aimed at finding and developing various separation and treatment techniques, has been conducted over the past few decades. The conventional treatment methods of arsenic involve coagulation with ferric …


Effects Of Surface Topography And Vibrations On Wetting: Superhydrophobicity, Icephobicity And Corrosion Resistance, Rahul Ramachandran May 2016

Effects Of Surface Topography And Vibrations On Wetting: Superhydrophobicity, Icephobicity And Corrosion Resistance, Rahul Ramachandran

Theses and Dissertations

Concrete and metallic materials are widely used in construction and water industry. The interaction of both these materials with water and ice (or snow) produces undesirable results and is therefore of interest. Water that gets absorbed into the pores of dry concrete expands on freezing and can lead to crack formation. Also, the ice accretion on concrete surfaces such as roadways can have disastrous consequence. Metallic components used in the water industry undergo corrosion due to contact with aqueous corrosive solutions. Therefore, it is desirable to make concrete water/ice-repellent, and to make metallic surfaces corrosion-resistant.

Recent advances in micro/nanotechnology have …


Synthesis Of Lifepo4/C Cathode Nanomaterials For Lithium-Ion Batteries, Chao Cheng May 2016

Synthesis Of Lifepo4/C Cathode Nanomaterials For Lithium-Ion Batteries, Chao Cheng

Theses and Dissertations

Lithium-ion batteries have been widely used for many years. The wide application covers such as smart phones, laptops, digital cameras, MP3 players, and electric vehicles. Lithium-ion batteries have become the most important energy storage device in the future. For lithium-ion batteries, the performance of the cathode materials is one of the most important factors. In recent years, the cathode materials have been widely studied including LiCoO2, LiNiO2, LiMnO2, LiMn2O4 and phosphate etc. Among the olivine structure cathode materials, the LiFePO4 (LFP) displays an excellent electrochemical activity and a chemical stability which ensure a high safety. In order to better improve …


Nanostructured Organic/Inorganic Semicondutor Photovoltaics: Investigation On Morphology And Optoelectronics Performance, Aruna Wanninayake May 2016

Nanostructured Organic/Inorganic Semicondutor Photovoltaics: Investigation On Morphology And Optoelectronics Performance, Aruna Wanninayake

Theses and Dissertations

Organic solar cell is a promising technology because of the versatility of organic materials in terms of tunability of their electrical and optical properties. In addition, their relative insensitivity to film imperfections potentially allows for very low-cost high-throughput roll-to-roll processing. However, the power conversion efficiency of organic solar cell is still limited and needs to be improved in order to be competitive with grid parity. This work is focused on the design and characterization of a new organic/inorganic hybrid device to enhance the efficiency factors of bilayer organic solar cells such as: light absorption, exciton diffusion, exciton dissociation, charge transportation …


Radiation Effects In Thin Film Hexagonal Boron Nitride, Nathaniel M. Kaminski Mar 2016

Radiation Effects In Thin Film Hexagonal Boron Nitride, Nathaniel M. Kaminski

Theses and Dissertations

The radiation response of 2 nm and 12 nm hexagonal boron nitride (hBN) thin film insulators was studied using metal insulator semiconductor (MIS) devices. Current-voltage, capacitance-voltage, and impedance spectroscopy measurements were compared to quantify changes in hBN resistance due to radiation damage. MIS devices exposed to a gamma total dose deposition of 3.1 Mrad(Si) from a Co- 60 source exhibited a small increase in hBN resistance and no observable C-V shift associated with charge trapping. MIS devices irradiated with 4.5 MeV silicon ions showed no significant resistivity decrease to a threshold fluence of 1 ×1012 for the 2 nm …


Characterization Of 2d Jammed Granular Memristive Copper Arrays, Len L. Kedrow Mar 2016

Characterization Of 2d Jammed Granular Memristive Copper Arrays, Len L. Kedrow

Theses and Dissertations

A novel sensor made of jammed granular memristive copper spheres was explored in an effort to develop a protection technology that could be used in non-proliferation treaty monitoring. The micro-copper spheres were annealed for various times at a constant temperature. SEM, EDS, and XPS were used to characterize the growth of the oxide coating. Electrical characterization of the device was done by confining the granular copper spheres to a two-dimensional plane using a unique test fixture capable of measuring I-V curves at the boundary of the circuit board using tungsten pillar electrodes. Electroforming of the copper spheres produced soft dielectric …


Creep Of Hi-Nicalon™ S Ceramic Fiber Tows At 700°C In Air And In Silicic Acid-Saturated Steam, Matthew W. Piper Mar 2016

Creep Of Hi-Nicalon™ S Ceramic Fiber Tows At 700°C In Air And In Silicic Acid-Saturated Steam, Matthew W. Piper

Theses and Dissertations

Aircraft structural and engine components are subjected to elevated temperature and steam environments during operation. Turbine blades experience particularly harsh conditions that are approaching the operating temperature limits of current Nickel-based superalloys even with active cooling. Ceramic matrix composites (CMCs), which demonstrate high specific strength and specific stiffness and maintain these properties at elevated temperatures such that active cooling is not required, are prime candidates to replace superalloys as the materials for turbine blades. Ceramic matrix composites are composite materials that consist of a ceramic matrix with fiber reinforcement. This research investigated a silicon carbide (SiC) fiber, Hi-Nicalon™ S, which …


Radiation Effects On An Active Ytterbium-Doped Fiber Laser, Adam C. Poulin Mar 2016

Radiation Effects On An Active Ytterbium-Doped Fiber Laser, Adam C. Poulin

Theses and Dissertations

This is the first published research focused on the impact of gamma and mixed gamma/neutron radiation on an actively lasing ytterbium-doped fiber laser. While the gain medium of the ytterbium-doped fiber laser was irradiated, the power was measured in-situ and the spectrum was recorded intermittently. Two radiation sources were used, a 60Co cell and a reactor. Three irradiation experiments were conducted per radiation source; pristine fibers were used for the first two experiments, and fibers from the second experiment were re-irradiated for the third experiment. The results indicate that as the total dose increased linearly with time, the laser …


The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves Jan 2016

The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves

Theses and Dissertations

Ge1-xSnx alloys are among a small class of benign semiconductors with composition tunable bandgaps in the near-infrared spectrum. As the amount of Sn is increased the band energy decreases and a transition from indirect to direct band structure occurs. Hence, they are prime candidates for fabrication of Si-compatible electronic and photonic devices, field effect transistors, and novel charge storage device applications. Success has been achieved with the growth of Ge1-xSnx thin film alloys with Sn compositions up to 34%. However, the synthesis of nanocrystalline alloys has proven difficult due to larger discrepancies (~14%) in …


Drying Methods For The Fabrication Of Polymer Foam Material, Dalton Echard Jan 2016

Drying Methods For The Fabrication Of Polymer Foam Material, Dalton Echard

Theses and Dissertations

This is a report on the study of the drying of nanoporous polymer foam material fabricated by photolithogtaphic methods. Three drying methods were employed, which were air drying, supercritical drying and freeze drying. After fabrication and drying, physical properties of the polymer foams were measured. These measurements included density of the material, Young’s modulus, surface area, and the shape of the skeletal particles. The measurements determined the effect of the polymer concentration and the effect of drying methods. It was determined that polymer concentration had a much larger effect on the properties of the materials than the drying method.


Diagnostics And Degradation Investigations Of Li-Ion Battery Electrodes Using Single Nanowire Electrochemical Cells, Naveen Kumar Reddy Palapati, Naveen Kumar Reddy Palapati Jan 2016

Diagnostics And Degradation Investigations Of Li-Ion Battery Electrodes Using Single Nanowire Electrochemical Cells, Naveen Kumar Reddy Palapati, Naveen Kumar Reddy Palapati

Theses and Dissertations

Portable energy storage devices, which drive advanced technological devices, are improving the productivity and quality of our everyday lives. In order to meet the growing needs for energy storage in transportation applications, the current lithium-ion (Li-ion) battery technology requires new electrode materials with performance improvements in multiple aspects: (1) energy and power densities, (2) safety, and (3) performance lifetime. While a number of interesting nanomaterials have been synthesized in recent years with promising performance, accurate capabilities to probe the intrinsic performance of these high-performance materials within a battery environment are lacking. Most studies on electrode nanomaterials have so far used …