Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

PDF

University of Massachusetts Amherst

Self-assembly

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber Mar 2022

Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber

Doctoral Dissertations

Mesoscale materials, with feature sizes in the range of one hundred nanometers to tens of micrometers, are ubiquitous in Nature. In organisms, mesoscale building blocks connect the properties of underlying molecular and nanoscructures to those of macroscale, organism-scale materials through hierarchical assemblies of recurring structural motifs. The collective action of large numbers of mesoscale features can afford stunning features like the structural color of the morpho butterfly wing, calcium ion-mediated movement in muscle, and wood structures like xylem that can support enormous external compressive loads and negative internal pressure to transport nutrients throughout an organism. In synthetic systems, the design, …


Self-Assembling Networks In Soft Materials, Ishan Prasad Jul 2018

Self-Assembling Networks In Soft Materials, Ishan Prasad

Doctoral Dissertations

This dissertation presents a study on heterogeneous network structure in two distinct classes of soft material systems: disordered assemblies of jammed binary spheres and ordered morphologies of block copolymer melts. The aim is to investigate the combined role of geometry and entropy in structure formation of soft matter assemblies. First, we investigate the influence of particle size asymmetry on structural properties of jammed binary sphere mixtures. We give evidence of two distinct classes of materials separated by a critical size ratio that marks the onset of a sharp transition due to simultaneous jamming of a sub-component of the packing. We …


Solution-Based Assembly Of Conjugated Polymers Into Nanofibers For Organic Electronics, Daniel E. Acevedo Cartagena Nov 2017

Solution-Based Assembly Of Conjugated Polymers Into Nanofibers For Organic Electronics, Daniel E. Acevedo Cartagena

Doctoral Dissertations

Solution-based crystallization of conjugated polymers offers a scalable and attractive route to develop hierarchical structures for electronic devices. The introduction of well-defined nucleation sites into metastable solutions provides a way to regulate the crystallization behavior, and therefore the morphology of the material. A crystallization method for generating metastable solutions of poly(3-hexylthiophene) (P3HT) was established. These metastable solutions allow P3HT to selectively crystallize into nanofibers (NFs) on graphene-coated surfaces. It was found that the crystallization kinetics is faster with increasing P3HT molecular weight and concentration. Through in situ atomic force microscopy, it was confirmed that NFs grow vertically in a face-on …


Thermodynamic And Dynamic Models For Directed Assembly Of Small Ensembles Of Colloidal Particles, Raghuram Thyagarajan Nov 2016

Thermodynamic And Dynamic Models For Directed Assembly Of Small Ensembles Of Colloidal Particles, Raghuram Thyagarajan

Doctoral Dissertations

Self and directed assembly of finite clusters (10 to 1000) of colloidal particles into crystalline objects is an emerging area of scientific interest that finds applica- tions in manufacturing of photonic crystals and other meta-materials. Such assembly problems are also of fundamental scientific interest because they involve thermodynamically small systems, with a number of particles that is far below the bulk limit. Robust methods for assembling defect-free target structures will ultimately require reduced-dimension process models that link the particle-level dynamics of the colloids to the actuator states. We have developed a three-part strategy for developing such process models. First, we …


Assembly And Deformation Of Amphiphilic Copolymers And Networks At Fluid Interfaces, Jinhye Bae Aug 2015

Assembly And Deformation Of Amphiphilic Copolymers And Networks At Fluid Interfaces, Jinhye Bae

Doctoral Dissertations

Surface tension generally plays a negligible role on macroscopic scales, but it is often the dominant force on nanometer to micrometer length-scales. The efforts of this dissertation are mainly focused on understanding the role that surface tension plays on sub-millimeter scale objects, especially on soft material systems, and how to utilize this phenomenon to assemble and deform objects. This dissertation addresses several phenomena of nano-and micron-sized objects at fluid interfaces. For nano-scale objects, amphiphilic block copolymer chains were used to explore interfacial behaviors due to their enhanced stability, mechanical properties, and tunability compared to other interfacially active materials such as …


Functional Nanostructures From Nanoparticle Building Blocks, Jimmy Lawrence Mar 2015

Functional Nanostructures From Nanoparticle Building Blocks, Jimmy Lawrence

Doctoral Dissertations

Advances in the synthetic strategies of engineered nanomaterials, multifunctional molecules and polymers have opened pathways for the development of functional nanomaterials having unique optoelectronic, mechanical, and biological properties. By designing the chemistry of surface ligands, the organic interface of nanoparticles, one can further the versatility and utilization of engineered nanomaterials, opening pathways for breakthroughs in sensing, catalysis, and delivery using nanomaterials. This thesis describes the synthesis and characterization of small molecule and polymer ligand functionalized inorganic nanoparticles (e.g., metal, semiconducting). Embedding specific chemical functionality into the ligand periphery of nanoparticles enables the resulting functional nanoparticles to react selectively …


Self-Assembly Of Block Copolymers By Solvent Vapor Annealing, Mechanism And Lithographic Applications, Xiaodan Gu Apr 2014

Self-Assembly Of Block Copolymers By Solvent Vapor Annealing, Mechanism And Lithographic Applications, Xiaodan Gu

Doctoral Dissertations

Block copolymers (BCP) are a unique class of polymers, which can self-assemble into ordered microdomains with sizes from 3 nm to about 50 nm making BCPs an appealing meso-scale material. In thin films, arrays of BCP microdomains with longrange lateral order can serve as ideal templates or scaffolds for patterning nano-scale functional materials and synthesizing nanostructured materials with size scales that exceed the reach of photolithography. Among many annealing methods, solvent vapor annealing (SVA) is a low-cost, highly efficient way to annihilate defects in BCP thin films and facilitates the formation of highly ordered microdomains within minutes. Directing the self-assembly …


Characterization Of Self-Assembled Functional Polymeric Nanostructures: I. Magnetic Nanostructures From Metallopolymers Ii. Zwitterionic Polymer Vesicles In Ionic Liquid, Raghavendra Raj Maddikeri Feb 2013

Characterization Of Self-Assembled Functional Polymeric Nanostructures: I. Magnetic Nanostructures From Metallopolymers Ii. Zwitterionic Polymer Vesicles In Ionic Liquid, Raghavendra Raj Maddikeri

Open Access Dissertations

Two diverse projects illustrate the application of various materials characterization techniques to investigate the structure and properties of nanostructured functional materials formed in both bulk as well as in solutions. In the first project, ordered magnetic nanostructures were formed within polymer matrix by novel metallopolymers. The novel metal-functionalized block copolymers (BCPs) enabled the confinement of cobalt metal ions within nanostructured BCP domains, which upon simple heat treatment resulted in room temperature ferromagnetic (RTFM) materials. On the contrary, cobalt functionalized homopolymer having similar chemical structure and higher loading of metal-ion are unstructured and exhibited superparamagnetic (SPM) behavior at room temperature. Based …


Synthesis And Interfacial Behavior Of Functional Amphiphilic Graft Copolymers Prepared By Ring-Opening Metathesis Polymerization, Kurt E. Breitenkamp Feb 2009

Synthesis And Interfacial Behavior Of Functional Amphiphilic Graft Copolymers Prepared By Ring-Opening Metathesis Polymerization, Kurt E. Breitenkamp

Open Access Dissertations

This thesis describes the synthesis and application of a new series of amphiphilic graft copolymers with a hydrophobic polyolefin backbone and pendent hydrophilic poly(ethylene glycol) (PEG) grafts. These copolymers are synthesized by ruthenium benzylidene-catalyzed ring-opening metathesis polymerization (ROMP) of PEG-functionalized cyclic olefin macromonomers to afford polycyclooctene- graft -PEG (PCOE- g -PEG) copolymers with a number of tunable features, such as PEG graft density and length, crystallinity, and amphiphilicity. Macromonomers of this type were prepared first by coupling chemistry using commercially available PEG monomethyl ether derivatives and a carboxylic acid-functionalized cycloctene. In a second approach, macromonomers possessing a variety of PEG …