Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Engineering

Synthesis And Assembly Of Polymer Materials At Interfaces, Xiaoshuang Wei Oct 2022

Synthesis And Assembly Of Polymer Materials At Interfaces, Xiaoshuang Wei

Doctoral Dissertations

The overarching goal of the thesis is to understand growth and assembly of polymer materials at interfaces. Chapter 2 and Chapter 3 study simultaneous polymer growth and assembly at fluid interfaces, where in-situ photopolymerization and vapor phase deposition were utilized to grow polymers, respectively. Chapter 4 leverages capillary condensation to pattern polymer growth at solid substrates. Chapter 1 provides background information on polymer materials at interfaces, and vapor phase deposition method (initiated chemical vapor deposition, iCVD) to grow polymers. This chapter also reviews polymer thin film wetting, and colloidal assemblies at interfaces. In Chapter 2, we demonstrate the preparation …


Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Quantifying Elasto-Adhesion And Fluid-Elastic Dynamics For Ultra-Soft Hydrogel Interfaces, Hongbo Fu Oct 2022

Quantifying Elasto-Adhesion And Fluid-Elastic Dynamics For Ultra-Soft Hydrogel Interfaces, Hongbo Fu

Doctoral Dissertations

Hydrogels are constructed with polymer networks swollen with water, which are soft and with much smaller shear moduli than bulk moduli. Due to the similar moduli to biological tissues, synthetic hydrogels have been used for biological applications. While interfacial properties are important for many of the applications of soft materials, quantifying these properties is challenging for ultra-soft materials. Ultra-softness causes difficulties in measuring interfacial properties with conventional force-based methods. For example, soft specimens deform largely under gravity and external forces, and thus the assumptions of the established methods are invalid. Additionally, many of the applications for hydrogels require them to …


Enabling Nanoimprint Lithography Techniques Across Multiple Manufacturing Processes, Vincent Einck Sep 2022

Enabling Nanoimprint Lithography Techniques Across Multiple Manufacturing Processes, Vincent Einck

Doctoral Dissertations

Advanced nanooptics in the areas of flat lenses, diffractive elements, and tunable emissivity require a route to high throughput manufacturing. Nanooptics are often demanding of high refractive index materials, nanometer precision and ease of fabrication. Nanoimprint lithography (NIL) is a low-cost, high throughput manufacturing technique beginning to be realized in commercial industry.1,2 The NIL process is an ideal manufacturing candidate due to its ability to have a fast process time, efficient use of materials, repeatability and high precision while also having wide diversity of potential structures and material choices. Appling NIL techniques to other facets of manufacturing enable the …


Additive Manufacturing Of Sub-Micron Features And Mechanical Linkages, David K. Limberg Jun 2022

Additive Manufacturing Of Sub-Micron Features And Mechanical Linkages, David K. Limberg

Doctoral Dissertations

In recent years material constraints have become the limiting factor in several fields, including batteries, robotics, and medicine, and these needs have prompted the development of materials with programmable properties. To this end, much effort has been dedicated to designing metamaterials that have unprecedented optical, mechanical, and thermal properties, along with systems for additive manufacturing to build their complex structures with high precision and throughput. The field of additive manufacturing has proved to be a platform for innovation across many industries yet is still limited with regards to feature sizes, print rates, and diversity of materials. Mechanical devices like linkages …


Phase Behavior Of Oppositely Charged Polymerized Ionic Liquids In Solution, Bulk, And Crosslinked Network States, Minjung Lee Jun 2022

Phase Behavior Of Oppositely Charged Polymerized Ionic Liquids In Solution, Bulk, And Crosslinked Network States, Minjung Lee

Doctoral Dissertations

Polymerized ionic liquids (PILs), a class of polyelectrolytes, are fascinating materials for various applications utilizing ion transport, especially due to their advantageous properties including negligible vapor pressure, low flammability, thermal stability, high conductivity, and wide electrochemical stability windows. Furthermore, PILs are tunable in their properties such as ionic conductivity, glass transition temperature (Tg), solubility, and (electro-)chemical stability. In this thesis, we focus on fundamental studies of phase behaviors of PILs in the solution and bulk states in chapters 2 and 3, respectively. Specifically, non-aqueous systems are used to study the effect of solvent quality in the regime …


Euplectella Aspergillum’S Natural Lattice Structure For Structural Design & Stability Landscape Of Thin Cylindrical Shells With Dimple Imperfections, Zoe Y. Sloane Mar 2022

Euplectella Aspergillum’S Natural Lattice Structure For Structural Design & Stability Landscape Of Thin Cylindrical Shells With Dimple Imperfections, Zoe Y. Sloane

Masters Theses

The first portion of this thesis assesses the structural application of a bracing design inspired by the deep-sea sponge, Euplectella Aspergillum. Many studies have investigated the natural strength found in the unique skeletal structure of this species. The braced design inspired by the sponge features square frames with two sets of cross-braces that are offset from the corners of each frame, creating a pattern of open and closed cells. This study reports the results of multiple Finite Element Analysis (FEA) computations that compare the described bracing pattern to a more common bracing design used in structural design. The designs …


New Isomeric Silicones: Synthesis, Compositions And Surface Properties, Yan Cong Mar 2022

New Isomeric Silicones: Synthesis, Compositions And Surface Properties, Yan Cong

Doctoral Dissertations

This dissertation presents research performed in the field of silicone polymer science, which refers to polymers with alternating silicon-oxygen backbones. Three research topics will be explored. The first topic involves the synthesis of trimethylsiloxysilsesquioxane (MT) copolymers with vinyl and hydride functionalities as reactive liquid silicone precursors. The second topic describes titration of dimethylsiloxy (D) composition into trimethylsiloxysilsesquioxane (MT) copolymers for the purpose of controlling the mechanical properties and thermal stabilities of the material. The last topic explores the modification of hydrophobic silicone surfaces with oxygen plasma to form silica-like, hydrophilic surfaces and the behaviors of hydrophobic recovery. The first chapter …


Solidification Experiments And Magnetohydrodynamic Models In Electromagnetic Levitation, Gwendolyn Bracker Mar 2022

Solidification Experiments And Magnetohydrodynamic Models In Electromagnetic Levitation, Gwendolyn Bracker

Doctoral Dissertations

Electromagnetic levitation (EML) is a technique for containerless processing. The unique environment of containerless processing allows for the study of highly reactive melts at elevated temperatures. In containerless processing, the interface between a melt and its container is removed, reducing chemical contamination. In addition, levitation techniques reduce the available heterogeneous nucleation sites, providing greater access to the undercooled region for solidification studies. Levitation techniques provide the environment to study the fundamental behavior and thermophysical properties of liquid metals. During electromagnetic levitation experiments, magnetohydrodynamic flow is driven in the sample by the electromagnetic force field. This flow can have various effects …


Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber Mar 2022

Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber

Doctoral Dissertations

Mesoscale materials, with feature sizes in the range of one hundred nanometers to tens of micrometers, are ubiquitous in Nature. In organisms, mesoscale building blocks connect the properties of underlying molecular and nanoscructures to those of macroscale, organism-scale materials through hierarchical assemblies of recurring structural motifs. The collective action of large numbers of mesoscale features can afford stunning features like the structural color of the morpho butterfly wing, calcium ion-mediated movement in muscle, and wood structures like xylem that can support enormous external compressive loads and negative internal pressure to transport nutrients throughout an organism. In synthetic systems, the design, …


Development Of Crosslinking Technologies For Waterborne & Powder Coatings, Mengfei Huang Feb 2022

Development Of Crosslinking Technologies For Waterborne & Powder Coatings, Mengfei Huang

Doctoral Dissertations

Waterborne coatings and powder coatings are fast-growing sectors of the world coating market due to their environmentally friendliness as they have low or zero volatile organic compounds (VOCs) emission. However, compared with solventborne coatings, significant limitations need to be overcome to enable their broad applications. My dissertation will discuss several novel crosslinking strategies for waterborne and powder coating that could enable curing on-demand at ambient conditions, with facile polymerization and easy processing, and ultimately, exhibit a high degree of crosslinking and excellent performance that is comparable to solventborne coatings. We introduced and demonstrated the anionic polymerization mechanism and the high …


Designing Nonflammable Polymers And Blends Containing Deoxybenzoin Derivatives, Elizabeth Stubbs Feb 2022

Designing Nonflammable Polymers And Blends Containing Deoxybenzoin Derivatives, Elizabeth Stubbs

Doctoral Dissertations

The importance of synthetic polymers in everyday life continues to grow, owing to their societal importance for improving our standard-of-living and enabling advances spanning medicine, electronics, construction materials, transportation. While niche applications occupy a small fraction of the overall volume of polymers produced, large scale applications tend to employ lower cost materials, such as polyethylene, polypropylene, and polystyrene. In addition to environmental considerations connected to these polymerized hydrocarbons, produced in excess of 380 million tons per year worldwide, their inherent flammability creates additional requirements associated with their manufacturing and use. Societal benefits of such polymers are extensive, and thus, there …


Tailoring Interfaces And Composition For Stable And Efficient Perovskite Solar Cells, Hamza Javaid Feb 2022

Tailoring Interfaces And Composition For Stable And Efficient Perovskite Solar Cells, Hamza Javaid

Doctoral Dissertations

Metal halide perovskite solar cells (PSCs) have revolutionized the field of thin film photovoltaics. Within a decade, the power conversion efficiencies (PCEs) have increased at a phenomenal rate, rising from 3.8% to more than 25% in single-junction devices, moving them ahead of the current silicon-based technology. The high efficiencies of perovskite solar cells (PSCs) and their other unique properties arise from a combination of organic and inorganic components and electronic-ionic conduction, making them excellent candidates for a plethora of applications. However, PSCs face a significant—and ironic—roadblock to commercialization: these light-harvesting materials degrade under sunlight—the very condition they would need …