Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

PDF

California Polytechnic State University, San Luis Obispo

Sustainability

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Exploring The Potential Of Pavegen’S Kinetic Energy Generating Floor For Sustainable Energy Solutions: A Proposal For Cal Poly Slo, Brandon J. Cuneo Jun 2023

Exploring The Potential Of Pavegen’S Kinetic Energy Generating Floor For Sustainable Energy Solutions: A Proposal For Cal Poly Slo, Brandon J. Cuneo

Construction Management

This paper proposes the installation of Pavegen's kinetic energy generating floors at Cal Poly’s campus as a sustainable energy solution. Pavegen has developed a pioneering technology that converts footsteps into clean and renewable energy. The versatility of these floors is demonstrated through successful implementations in various settings, such as transportation hubs and public spaces, generating power from foot traffic. Collaborations with Schneider Electric, installation at Dupont Circle, and integration at Heathrow Airport showcase the potential for sustainable urban infrastructure. This paper outlines research conducted on Pavegen and similar solutions, including communication with company representatives and examining proposed installation locations at …


Precious Plastics - Plastic Brick Machine Fabrication, Timothy Ukaobasi Kanu, Evi Paraskevi Troulis Mar 2023

Precious Plastics - Plastic Brick Machine Fabrication, Timothy Ukaobasi Kanu, Evi Paraskevi Troulis

Architectural Engineering

The goal of this research is to determine the structural parameters of the recycled plastic polypropylene when molded into bricks resembling CMU blocks. To accomplish this, three mechanisms had to be assembled: the shredder, the injector, and the 1x1 mold. A tensile and compression test were to be performed on the plastic brick, and the values would be used to compare the tensile and compressive strength of PP plastic bricks, as well as their modulus of elasticity and stress vs. Strain performance. These values would be analyzed to determine whether it would be feasible to build an entire plastic wall. …


Analysis Of The Use Of Waste Material In 3d Printing, Alexander Laurence Jun 2021

Analysis Of The Use Of Waste Material In 3d Printing, Alexander Laurence

Materials Engineering

Globally, only 9% of plastic by mass is recycled. Allowing consumers to directly convert polyethylene terephthalate (PET) waste into 3D filament can increase the recycling rate by reducing contamination and costs from traditional large-scale recycling methods. This was tested by heating strips of PET to various temperatures within its glass transition region and pressing a roller with a 1.75 mm indentation against it to observe strip deformation. PET was also placed in a hemispherical well with a 1.75 mm diameter hole at the bottom and heated above its melting temperature to determine the mass of PET required to extrude 3D …


Next Generation Protocol: Innovating A Resilient Future, Andrew Steven Rudnick, Jamie Cannady, Joe Decesaro, Juan A. Ortiz Salazar Jun 2018

Next Generation Protocol: Innovating A Resilient Future, Andrew Steven Rudnick, Jamie Cannady, Joe Decesaro, Juan A. Ortiz Salazar

Materials Engineering

Conventional practices do not account for product life beyond end-of-sale – these practices are not sustainable. We have developed an end-of-life protocol that includes a metric that we call the Recovery Rating. The objectives of this Next Generation Protocol, beyond supporting the United Nations’ Sustainable Development Goals, are to encourage the production of goods designed for recovery and to promote the collaboration between consumers, the public, and the private sector to recover goods at their end-of-life. The Recovery Rating that we propose evaluates and quantifies recovery potential of products. The Recovery Rating, which is normed against embodied energy from the …


The Effect Of Biocomposite Material In A Composite Structure Under Compression Loading, Benjamin Andrew Sweeney Feb 2017

The Effect Of Biocomposite Material In A Composite Structure Under Compression Loading, Benjamin Andrew Sweeney

Master's Theses

While composite structures exhibit exceptional strength and weight saving possibilities for engineering applications, sometimes their overall cost and/or material performance can limit their usage when compared to conventional structural materials. Meanwhile ‘biocomposites’, composite structures consisting of natural fibers (i.e. bamboo fibers), display higher cost efficiency and unique structural benefits such as ‘sustainability’. This analysis will determine if the integration of these two different types of composites are beneficial to the overall structure. Specifically, the structure will consist of a one internal bamboo veneer biocomposite ply; and two external carbon fiber weave composite plies surrounding the bamboo biocomposite. To acquire results …


The Environmental Impact Assessment Of Cal Poly's Manufacturing Laboratory, Yoonho Mark Kim Jun 2014

The Environmental Impact Assessment Of Cal Poly's Manufacturing Laboratory, Yoonho Mark Kim

Materials Engineering

The purpose of the study is to obtain basic understanding of the sustainability of Cal Poly IME 144 laboratory. Since the general condition of the lab prevents precise, efficient data collection, fuzzy logic is used to provide an overview of the laboratory's sustainability. Aluminum chips, brass chips, and paper waste are identified as primary waste streams. Electric usage of the laboratory is approximately calculated based on the machines' running time. Fuzzy logic system with three inputs and one output is designed in the Matlab software environment with Simulink to simulate a model for the laboratory's sustainability. Also the study suggests …


Integrating Project-Based Learning Throughout The Undergraduate Engineering Curriculum, Richard N. Savage, Katherine C. Chen, Linda Vanasupa Jan 2007

Integrating Project-Based Learning Throughout The Undergraduate Engineering Curriculum, Richard N. Savage, Katherine C. Chen, Linda Vanasupa

Materials Engineering

Equipping engineering students with the skills and knowledge required to be successful global engineers in the 21st century is one of the primary objectives of undergraduate educators. Enabling students to practice self-directed learning, to find solutions to design problems that are sustainable and to recognize that they are part of a global community are just of few of our educational goals. Self-directed learning can define an individual’s ability to practice life-long learning. It places the responsibility on the individual to initiate and direct the learning process and can enable an individual to adapt to change. Project-based learning provides the contextual …