Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

PDF

California Polytechnic State University, San Luis Obispo

Mechanical Engineering

Theses/Dissertations

HEPA

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Nano Fab Lab 63, Brian K. Deemer, Josh Clemons, Nick Brodine, Delaney Fitzsimmons Jun 2019

Nano Fab Lab 63, Brian K. Deemer, Josh Clemons, Nick Brodine, Delaney Fitzsimmons

Mechanical Engineering

Lawrence Livermore National Laboratories (LLNL) has several steps in the production process for ceramic nanofiber tubes that they would like to improve - electrospinning, cutting, rolling, sealing and heat treating. We undertook the challenge to deliver LLNL with a semi-automated process that efficiently integrates the steps of cutting, rolling, and sealing to save time and improve control over end dimensions. In this document, we discuss the technical background of the manufacturing steps currently followed to create nanofiber tubes, identify which steps are incorporated in our prototype and explain how they will interface with one another, define the design requirements, present …


Mini High Temperature Test Unit Final Design Report, Kevin Liu, Juan P. Castillo Jun 2017

Mini High Temperature Test Unit Final Design Report, Kevin Liu, Juan P. Castillo

Mechanical Engineering

Lawrence Livermore National Laboratory has invested considerable effort to develop new standard for nuclear grade HEPA filters that can withstand high temperatures along with methods to optimally test not only the experimental filter media, but also new frame seals and media binders. Therefore, LLNL in collaboration with Cal Poly has designed and built a Mini High Temperature Testing Unit (MHTTU) to recreate conditions observed during a fire and to test different materials in an effective, inexpensive, regulated and reliable method. The existing prototype was unable to achieve the ideal testing conditions of 1000°F air at the low flow rates of …