Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

PDF

Air Force Institute of Technology

Faculty Publications

Series

Optical parametric oscillators

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Deep Selenium Donors In Zngep2 Crystals: An Electron Paramagnetic Resonance Study Of A Nonlinear Optical Material, Timothy D. Gustafson, Larry E. Halliburton, Nancy C. Giles, Peter G. Schunemann, Kevin T. Zawilski, J. Jesenovec, Kent L. Averett, Jeremy Slagle Apr 2024

Deep Selenium Donors In Zngep2 Crystals: An Electron Paramagnetic Resonance Study Of A Nonlinear Optical Material, Timothy D. Gustafson, Larry E. Halliburton, Nancy C. Giles, Peter G. Schunemann, Kevin T. Zawilski, J. Jesenovec, Kent L. Averett, Jeremy Slagle

Faculty Publications

Zinc germanium diphosphide (ZnGeP2) is a ternary semiconductor best known for its nonlinear optical properties. A primary application is optical parametric oscillators operating in the mid-infrared region. Controlled donor doping provides a method to minimize the acceptor-related absorption bands that limit the output power of these devices. In the present study, a ZnGeP2 crystal is doped with selenium during growth. Selenium substitutes for phosphorus and serves as a deep donor. Significant concentrations of native defects (zinc vacancies, germanium-on-zinc antisites, and phosphorous vacancies) are also present in the crystal. Electron paramagnetic resonance (EPR) is used to establish the …


Residual Optical Absorption From Native Defects In Cdsip2 Crystals, Timothy D. Gustafson, Nancy C. Giles, Elizabeth M. Scherrer, Kevin T. Zawilski, Peter G. Schunemann, Kent L. Averett, Jonathan E. Slagle, Larry E. Halliburton Feb 2024

Residual Optical Absorption From Native Defects In Cdsip2 Crystals, Timothy D. Gustafson, Nancy C. Giles, Elizabeth M. Scherrer, Kevin T. Zawilski, Peter G. Schunemann, Kent L. Averett, Jonathan E. Slagle, Larry E. Halliburton

Faculty Publications

CdSiP2 crystals are used in optical parametric oscillators to produce tunable output in the mid-infrared. As expected, the performance of the OPOs is adversely affected by residual optical absorption from native defects that are unintentionally present in the crystals. Electron paramagnetic resonance (EPR) identifies these native defects. Singly ionized silicon vacancies (V-Si) are responsible for broad optical absorption bands peaking near 800, 1033, and 1907 nm. A fourth absorption band, peaking near 630 nm, does not involve silicon vacancies. Exposure to 1064 nm light when the temperature of the CdSiP2 crystal is near 80K converts …