Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Engineering

Evaluation Of Microstructural And Mechanical Behavior Of Ahss Cp780 Steel Welded By Gmaw-Pulsed And Gmaw-Pulsed-Brazing Processes, Alan Jadir Romero-Orozco, Jaime Taha-Tijerina, Rene De Luna-Alanis, Victor Hugo Lopez-Morelos, Maria Del Carmen Ramirez, Melchor Salazar-Martinez, Francisco Fernando Curiel-Lopez Mar 2022

Evaluation Of Microstructural And Mechanical Behavior Of Ahss Cp780 Steel Welded By Gmaw-Pulsed And Gmaw-Pulsed-Brazing Processes, Alan Jadir Romero-Orozco, Jaime Taha-Tijerina, Rene De Luna-Alanis, Victor Hugo Lopez-Morelos, Maria Del Carmen Ramirez, Melchor Salazar-Martinez, Francisco Fernando Curiel-Lopez

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Joints of complex phase 780 (CP-780) advanced high strength steel (AHSS) were carried out by using an ER-CuAl-A2 filler metal for the gas metal arc welding pulsed brazing (GMAW-P- brazing) process and the ER-80S-D2 for the GMAW-P process employing two levels of heat input. The phases in the weld bead and HAZ were analyzed, and the evaporation of zinc by means of scanning electron microscopy (SEM) was also monitored. The mechanical properties of the welded joints were evaluated by tension, microhardness and vertical impact tests. It was found that there was greater surface Zn evaporation in the joints welded with …


Impact Of Sintering Time And Temperature On Mechanical Properties In Projection Sintering Of Polyamide-12, Justin Nussbaum, Taranjot Kaur, Julie Harmon, Nathan B. Crane Oct 2020

Impact Of Sintering Time And Temperature On Mechanical Properties In Projection Sintering Of Polyamide-12, Justin Nussbaum, Taranjot Kaur, Julie Harmon, Nathan B. Crane

Faculty Publications

In powder bed fusion additive manufacturing (AM), the fusing process is temperature and time dependent. However, little work has been done to understand how different processing temperatures and times might impact the mechanical properties at longer sintering times than are typical in laser sintering (LS) systems. Prior results with projection sintering have shown that heating for longer times (>1s) improves part toughness compared to laser sintering. In this work, Large Area Projection Sintering (LAPS) is used to sinter entire layers of material simultaneously over the course of a few seconds with spatial control of layer temperature. This work evaluates …


Boron Nitride Nanotube Based Lightweight Metal Matrix Composites: Microstructure Engineering And Stress-Transfer Mechanics, Pranjal Nautiyal Jun 2020

Boron Nitride Nanotube Based Lightweight Metal Matrix Composites: Microstructure Engineering And Stress-Transfer Mechanics, Pranjal Nautiyal

FIU Electronic Theses and Dissertations

Lightweight metals, such as Aluminum, Magnesium and Titanium, are receiving widespread attention for manufacturing agile structures. However, the mechanical strength of these metals and their alloys fall short of structural steels, curtailing their applicability in engineering applications where superior load-bearing ability is required. There is a need to effectively augment the deformation- and failure-resistance of these metals without compromising their density advantage.

This dissertation explores the mechanical reinforcement of the aforementioned lightweight metal matrices by utilizing Boron Nitride Nanotube (BNNT), a 1D nanomaterial with extraordinary mechanical properties. The nanotubes are found to resist thermo-oxidative transformations up to ~750°C, establishing their …


Mechanical Properties Of Zr-Based Bulk Metallic Glass Parts Fabricated By Laser-Foil-Printing Additive Manufacturing, Yingqi Li, Ming-Chuan Leu, Hai-Lung Tsai Aug 2018

Mechanical Properties Of Zr-Based Bulk Metallic Glass Parts Fabricated By Laser-Foil-Printing Additive Manufacturing, Yingqi Li, Ming-Chuan Leu, Hai-Lung Tsai

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The application of bulk metallic glasses (BMGs) has been traditionally limited to parts with small dimensions and simple geometries, due to the requirement of fast cooling during the conventional process of casting. This research exemplifies a promising additive manufacturing method, i.e., laser-foil-printing (LFP), to fabricate high-quality BMG parts with large dimensions and complex geometries. In this study, Zr52.5Ti5Al10Ni14.6Cu17.9 BMG parts were fabricated by LFP technology in which MG foils are laser welded layer-by- layer upon a substrate. The mechanical properties of the fabricated BMG parts were measured using micro-indentation, tensile test …


Pulsed Laser Beam Welding Of Pd43Cu27Ni10P20 Bulk Metallic Glass, Ling Shao, Amit Datye, Jiankang Huang, Jittisa Ketkaew, Sung Woo Sohn, Shaofan Zhao, Sujun Wu, Yuming Zhang, Udo D. Schwarz, Jan Schroers Aug 2017

Pulsed Laser Beam Welding Of Pd43Cu27Ni10P20 Bulk Metallic Glass, Ling Shao, Amit Datye, Jiankang Huang, Jittisa Ketkaew, Sung Woo Sohn, Shaofan Zhao, Sujun Wu, Yuming Zhang, Udo D. Schwarz, Jan Schroers

Electrical and Computer Engineering Faculty Publications

We used pulsed laser beam welding method to join Pd43Cu27Ni10P20 (at.%) bulk metallic glass and characterized the properties of the joint. Fusion zone and heat-affected zone in the weld joint can be maintained completely amorphous as confirmed by X-ray diffraction and differential scanning calorimetry. No visible defects were observed in the weld joint. Nanoindentation and bend tests were carried out to determine the mechanical properties of the weld joint. Fusion zone and heat-affected zone exhibit very similar elastic moduli and hardness when compared to the base material, and the weld joint shows high …


Mechanical Characterization Of Parts Produced By Ceramic On‐Demand Extrusion Process, Amir Ghazanfari, Wenbin Li, Ming Leu, Gregory Hilmas Jan 2017

Mechanical Characterization Of Parts Produced By Ceramic On‐Demand Extrusion Process, Amir Ghazanfari, Wenbin Li, Ming Leu, Gregory Hilmas

Faculty Publications, Mechanical Engineering

Ceramic On‐Demand Extrusion (CODE) is an additive manufacturing process recently developed to produce dense three‐dimensional ceramic components. In this paper, the properties of parts produced using this freeform extrusion fabrication process are described. High solids loading (~60 vol%) alumina paste was prepared to fabricate parts and standard test methods were employed to examine their properties including the density, strength, Young's modulus, Weibull modulus, toughness, and hardness. Microstructural evaluation was also performed to measure the grain size and critical flaw size. The results indicate that the properties of parts surpass most other ceramic additive manufacturing processes and match conventional fabrication techniques.


Effect Of Architecture And Porosity On Mechanical Properties Of Borate Glass Scaffolds Made By Selective Laser Sintering, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Taylor Comte Aug 2013

Effect Of Architecture And Porosity On Mechanical Properties Of Borate Glass Scaffolds Made By Selective Laser Sintering, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Taylor Comte

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The porosity and architecture of bone scaffolds, intended for use in bone repair or replacement, are two of the most important parameters in the field of bone tissue engineering. The two parameters not only affect the mechanical properties of the scaffolds but also aid in determining the amount of bone regeneration after implantation. Scaffolds with five different architectures and four porosity levels were fabricated using borate bioactive glass (13-93B3) using the selective laser sintering (SLS) process. The pore size of the scaffolds varied from 400 to 1300 μm. The compressive strength of the scaffolds varied from 1.7 to 15.5 MPa …


Freeze-Form Extrusion Fabrication Of Functionally Graded Material Composites Using Zirconium Carbide And Tungsten, Ang Li, Aaron S. Thornton, Bradley K. Deuser, Jeremy Lee Watts, Ming-Chuan Leu, Greg Hilmas, Robert G. Landers Aug 2012

Freeze-Form Extrusion Fabrication Of Functionally Graded Material Composites Using Zirconium Carbide And Tungsten, Ang Li, Aaron S. Thornton, Bradley K. Deuser, Jeremy Lee Watts, Ming-Chuan Leu, Greg Hilmas, Robert G. Landers

Materials Science and Engineering Faculty Research & Creative Works

Ultra-high-temperature ceramics are being investigated for future use in aerospace applications due to their superior thermo-mechanical properties, as well as their oxidation resistance, at temperatures above 2000⁰C. However, their brittleness makes them susceptible to thermal shock failure. As graded composites, components fabricated as functionally-graded materials (FGMs) can combine the superior properties of ceramics with the toughness of an underlying refractory metal. This paper discusses the grading of two materials through the use of a Freeze-form Extrusion Fabrication (FEF) system to build FGM parts consisting of zirconium carbide (ZrC) and tungsten (W). Aqueous-based colloidal suspensions of ZrC and W were developed …


Effect Of Particle Size, Binder Content And Heat Treatment On Mechanical Properties Of 13-93 Bioactive Glass Scaffolds, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Mariano Garcia Velez Aug 2011

Effect Of Particle Size, Binder Content And Heat Treatment On Mechanical Properties Of 13-93 Bioactive Glass Scaffolds, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Mariano Garcia Velez

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Particle size, binder content and the post-processing schedule are important parameters that affect the microstructure, and, hence, the mechanical properties of parts produced using the indirect selective laser sintering process. 13-93 bioactive glass, with mean particle sizes ranging from 10 μm to 44 μm, is mixed with different amounts of stearic acid binder to fabricate green scaffolds. Through the design of the post-processing schedule, the time required for postprocessing the green scaffolds is reduced from the initial 80 hrs to 12 hrs. The compressive strength varies from 41 MPa for a part with~60% porosity to 157 MPa for a part …


Freeze Extrusion Fabrication Of 13-93 Bioactive Glass Scaffolds For Bone Repair, Tieshu Huang, Nikhil D. Doiphode, M. N. Rahaman, Ming-Chuan Leu, B. Sonny Bal, D. E. Day Aug 2010

Freeze Extrusion Fabrication Of 13-93 Bioactive Glass Scaffolds For Bone Repair, Tieshu Huang, Nikhil D. Doiphode, M. N. Rahaman, Ming-Chuan Leu, B. Sonny Bal, D. E. Day

Materials Science and Engineering Faculty Research & Creative Works

There is an increasing demand for synthetic scaffolds with the requisite biocompatibility, internal architecture, and mechanical properties for the bone repair and regeneration. In this work, scaffolds of a silicate bioactive glass (13-93) were prepared by a freeze extrusion fabrication (FEF) method and evaluated in vitro for potential applications in bone repair and regeneration. The process parameters for FEF production of scaffolds with the requisite microstructural characteristics, as well as the mechanical and cell culture response of the scaffolds were evaluated. After binder burnout and sintering (60 min at 700°C), the scaffolds consisted of a dense glass network with interpenetrating …


Freeform Fabrication Of Zirconium Diboride Parts Using Selective Laser Sintering, Ming-Chuan Leu, Erik B. Adamek, Tieshu Huang, Greg Hilmas, Fatih Dogan Aug 2008

Freeform Fabrication Of Zirconium Diboride Parts Using Selective Laser Sintering, Ming-Chuan Leu, Erik B. Adamek, Tieshu Huang, Greg Hilmas, Fatih Dogan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Using the Selective Laser Sintering (SLS) process, both flexural test bars and 3D fuel injector components have been fabricated with zirconium diboride (ZrB2) powder. Stearic acid was selected as the binder. Values of SLS process parameters were chosen such that the green parts could be built with sharp geometrical features and that the sintered parts could have good mechanical properties. After binder burnout and sintering, the SLS fabricated ZrB2 test bars achieved 80% theoretical density, and the average flexural strength of the sintered samples was 195 MPa. These values demonstrate the feasibility of the SLS process for …


Effect Of Residual Thermal Stresses On Fracture Behavior And Mechanical Properties Of Al Sub 2 O Sub 3/Ni Cermets, Guo Jin Li, Da Ming Chen, Xiao Xian Huang, Jing Kun Guo Jan 2002

Effect Of Residual Thermal Stresses On Fracture Behavior And Mechanical Properties Of Al Sub 2 O Sub 3/Ni Cermets, Guo Jin Li, Da Ming Chen, Xiao Xian Huang, Jing Kun Guo

Faculty Publications

Effect of residual thermal stresses on fracture behavior and mechanical properties of Al2O3/Ni cermets was qualitatively explained by using theory on residual thermal stresses. When Ni particles are located within Al2O3 grains or Ni content is relatively low, tensile stresses are exerted at Al2O3-Al2O3 grain boundary. While fracturing, intergranular fracture is easily produced. When Ni particles are dispersed at Al2O3 grain boundary or Ni content is relatively high, compressive stresses are exerted at Al2O3-Al2O3grain boundary. …