Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Bubble Nucleation In Superhydrophobic Microchannels Due To Subcritical Heating, Adam Cowley, Daniel Maynes, Julie Crockett, Brian D. Iverson Jun 2018

Bubble Nucleation In Superhydrophobic Microchannels Due To Subcritical Heating, Adam Cowley, Daniel Maynes, Julie Crockett, Brian D. Iverson

Faculty Publications

This work experimentally studies the effects of single wall heating on laminar flow in a high-aspect ratio superhydrophobic microchannel. When water that is saturated with air is used as the working liquid, the non-wetted cavities on the superhydrophobic surfaces act as nucleation sites and allow air to effervesce out of the water and onto the surface when heated. Previous works in the literature have only considered the opposite case where the water is undersaturated and absorbs air out the cavities for a microchannel setting. The microchannel considered in this work consists of a rib/cavity structured superhydrophobic surface and a glass …


Extending The Upper Temperature Range Of Microchip Gas Chromatography Using A Heater/Clamp Assembly, Abhijit Ghosh, Jacob E. Johnson, Johnathan G. Nuss, Brittany A. Stark, Aaron R. Hawkins, Luke T. Tolley, Brian D. Iverson, H. Dennis Tolley, Milton L. Lee Jan 2017

Extending The Upper Temperature Range Of Microchip Gas Chromatography Using A Heater/Clamp Assembly, Abhijit Ghosh, Jacob E. Johnson, Johnathan G. Nuss, Brittany A. Stark, Aaron R. Hawkins, Luke T. Tolley, Brian D. Iverson, H. Dennis Tolley, Milton L. Lee

Faculty Publications

Miniaturization of gas chromatography (GC) instrumentation is of interest because it addresses current and future issues relating to compactness, portability and field application. While incremental advancements continue to be reported in microchip GC, the current performance is far from acceptable. This lower performance compared to conventional GC is due to factors such as pooling of the stationary phase in corners of non-cylindrical channels, adsorption of sensitive compounds on incompletely deactivated surfaces, shorter column lengths and less than optimum interfacing to injector and detector. In this work, a microchip GC system was developed that solves the latter challenge, i.e. microchip interfacing …


High-Efficiency Thermodynamic Power Cycles For Concentrated Solar Power Systems, Marc T. Dunham, Brian Iverson Feb 2014

High-Efficiency Thermodynamic Power Cycles For Concentrated Solar Power Systems, Marc T. Dunham, Brian Iverson

Faculty Publications

This paper provides a review of high-efficiency thermodynamic cycles and their applicability to concentrating solar power systems, primarily focusing on high-efficiency single and combined cycles. Novel approaches to power generation proposed in the literature are also highlighted. The review is followed by analyses of promising candidates, including regenerated He-Brayton, regenerated CO2-Brayton, CO2 recompression Brayton, steam Rankine, and CO2-ORC combined cycle. Steam Rankine is shown to offer higher thermal efficiencies at temperatures up to about 600 ˚C but requires a change in materials for components above this temperature. Above this temperature, CO2 recompression Brayton cycles are shown to have very high …