Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Hardware Systems

PDF

2019

Institution
Keyword
Publication
Publication Type

Articles 1 - 25 of 25

Full-Text Articles in Engineering

Hardware-Entangled Software Execution Using Dynamic Pufs, Wenjie Xiong Dec 2019

Hardware-Entangled Software Execution Using Dynamic Pufs, Wenjie Xiong

Yale Day of Data

Low-end computing devices are becoming increasingly ubiquitous, especially due to the widespread deployment of Internet-of-Things products. There is, however, much concern about sensitive data being processed on these low-end devices which have limited protection mechanisms in place. This paper proposes a Hardware-Entangled Software Protection (HESP) scheme that leverages hardware features to protect software code from malicious modification before or during run-time. It also enables implicit hardware authentication. Thus, the software will execute correctly only on an authorized device and if the timing of the software, e.g., control flow, was not changed through malicious modifications. The proposed ideas are based on …


Involuntary Signal-Based Grounding Of Civilian Unmanned Aerial Systems (Uas) In Civilian Airspace, Keith Conley Dec 2019

Involuntary Signal-Based Grounding Of Civilian Unmanned Aerial Systems (Uas) In Civilian Airspace, Keith Conley

Master's Theses

This thesis investigates the involuntary signal-based grounding of civilian unmanned aerial systems (UAS) in unauthorized air spaces. The technique proposed here will forcibly land unauthorized UAS in a given area in such a way that the UAS will not be harmed, and the pilot cannot stop the landing. The technique will not involuntarily ground authorized drones which will be determined prior to the landing. Unauthorized airspaces include military bases, university campuses, areas affected by a natural disaster, and stadiums for public events. This thesis proposes an early prototype of a hardware-based signal based involuntary grounding technique to handle the problem …


Algorithms And Circuits For Analog-Digital Hybrid Multibeam Arrays, Paboda Viduneth A. Beruwawela Pathiranage Nov 2019

Algorithms And Circuits For Analog-Digital Hybrid Multibeam Arrays, Paboda Viduneth A. Beruwawela Pathiranage

FIU Electronic Theses and Dissertations

Fifth generation (5G) and beyond wireless communication systems will rely heavily on larger antenna arrays combined with beamforming to mitigate the high free-space path-loss that prevails in millimeter-wave (mmW) and above frequencies. Sharp beams that can support wide bandwidths are desired both at the transmitter and the receiver to leverage the glut of bandwidth available at these frequency bands. Further, multiple simultaneous sharp beams are imperative for such systems to exploit mmW/sub-THz wireless channels using multiple reflected paths simultaneously. Therefore, multibeam antenna arrays that can support wider bandwidths are a key enabler for 5G and beyond systems.

In general, N- …


Time-Difference Circuits: Methodology, Design, And Digital Realization, Shuo Li Oct 2019

Time-Difference Circuits: Methodology, Design, And Digital Realization, Shuo Li

Doctoral Dissertations

This thesis presents innovations for a special class of circuits called Time Difference (TD) circuits. We introduce a signal processing methodology with TD signals that alters the target signal from a magnitude perspective to time interval between two time events and systematically organizes the primary TD functions abstracted from existing TD circuits and systems. The TD circuits draw attention from a broad range of application fields. In addition, highly evolved complementary metal-oxide-semiconductor (CMOS) technology suffers from various problems related to voltage and current amplitude signal processing methods. Compared to traditional analog and digital circuits, TD circuits bring several compelling features: …


Stealthy Parametric Hardware Trojans In Vlsi Circuits, Samaneh Ghandali Oct 2019

Stealthy Parametric Hardware Trojans In Vlsi Circuits, Samaneh Ghandali

Doctoral Dissertations

Over the last decade, hardware Trojans have gained increasing attention in academia, industry and by government agencies. In order to design reliable countermeasures, it is crucial to understand how hardware Trojans can be built in practice. This is an area that has received relatively scant treatment in the literature. In this thesis, we examine how particularly stealthy parametric Trojans can be introduced to VLSI circuits. Parametric Trojans do not require any additional logic and are purely based on subtle manipulations on the sub-transistor level to modify the parameters of few transistors which makes them very hard to detect. We introduce …


Uncertainty Theory Based Reliability-Centric Cyber-Physical System Design, Houbing Song, Ya Jiang, Mingzhe Wang, Xun Jiao, Hui Kong, Rui Wang, Yongxin Liu, Jian Wang, Jiaguang Sun Oct 2019

Uncertainty Theory Based Reliability-Centric Cyber-Physical System Design, Houbing Song, Ya Jiang, Mingzhe Wang, Xun Jiao, Hui Kong, Rui Wang, Yongxin Liu, Jian Wang, Jiaguang Sun

Houbing Song

Cyber-physical systems (CPSs) are built from, and depend upon, the seamless integration of software and hardware components. The most important challenge in CPS design and verification is to design CPS to be reliable in a variety of uncertainties, i.e., unanticipated and rapidly evolving environments and disturbances. The costs, delays and reliability of the designed CPS are highly dependent on software-hardware partitioning in the design. The key challenges in partitioning CPSs is that it is difficult to formalize reliability characterization in the same way as the uncertain cost and time delay.

In this paper, we propose a new CPS design paradigm …


Adaptive-Hybrid Redundancy For Radiation Hardening, Nicolas S. Hamilton Sep 2019

Adaptive-Hybrid Redundancy For Radiation Hardening, Nicolas S. Hamilton

Theses and Dissertations

An Adaptive-Hybrid Redundancy (AHR) mitigation strategy is proposed to mitigate the effects of Single Event Upset (SEU) and Single Event Transient (SET) radiation effects. AHR is adaptive because it switches between Triple Modular Redundancy (TMR) and Temporal Software Redundancy (TSR). AHR is hybrid because it uses hardware and software redundancy. AHR is demonstrated to run faster than TSR and use less energy than TMR. Furthermore, AHR allows space vehicle designers, mission planners, and operators the flexibility to determine how much time is spent in TMR and TSR. TMR mode provides faster processing at the expense of greater energy usage. TSR …


Non-Intrusive Affective Assessment In The Circumplex Model From Pupil Diameter And Facial Expression Monitoring, Sudarat Tangnimitchok Jun 2019

Non-Intrusive Affective Assessment In The Circumplex Model From Pupil Diameter And Facial Expression Monitoring, Sudarat Tangnimitchok

FIU Electronic Theses and Dissertations

Automatic methods for affective assessment seek to enable computer systems to recognize the affective state of their users. This dissertation proposes a system that uses non-intrusive measurements of the user’s pupil diameter and facial expression to characterize his /her affective state in the Circumplex Model of Affect. This affective characterization is achieved by estimating the affective arousal and valence of the user’s affective state.

In the proposed system the pupil diameter signal is obtained from a desktop eye gaze tracker, while the face expression components, called Facial Animation Parameters (FAPs) are obtained from a Microsoft Kinect module, which also captures …


Weight Controlled Electric Skateboard, Zachary Barram, Carson Bertozzi, Vishnu Dodballapur Jun 2019

Weight Controlled Electric Skateboard, Zachary Barram, Carson Bertozzi, Vishnu Dodballapur

Computer Engineering

Technology and the way that humans interact is becoming more vital and omnipresent with every passing day. However, human interface device designers suffer from the increasingly popular “designed for me or people like me” syndrome. This design philosophy inherently limits accessibility and usability of technology to those like the designer. This places severe limits of usability to those who are not fully able as well as leaves non-traditional human interface devices unexplored. This project set out to explore a previously uncharted human interface device, on an electric skateboard, and compare it send user experience with industry leading human interface devices.


An Fpga Implementation Of Digital Guitar Effects, Carson James Robles Jun 2019

An Fpga Implementation Of Digital Guitar Effects, Carson James Robles

Computer Engineering

One of the most versatile aspects of the electric guitar is its ability to change its sound completely and on-the-fly through the use of effects pedals. Conventional guitar pedals contain one effect and can be chained together. The goal of this project is to serve as a contained multi-effects station with five popular electric guitar effects packed into one product. On top of this, the effects each have two tunable parameters to allow users to dial in the exact tone they are looking for. All of the signal processing done in this project is conducted on an FPGA which also …


Tidalsim Senior Project Report, Kent Zhang, Colin Vandervoort Jun 2019

Tidalsim Senior Project Report, Kent Zhang, Colin Vandervoort

Computer Engineering

Throughout the course of this project, our team helped the Cal Poly Biological Sciences department refine an intertidal zone simulator. The aim of this device is to allow any marine biologist to easily simulate a vast range of tidal zones in order to test animal behaviors within these zones. Another goal of this project is to make each simulation tank independent from the others by using a single microcontroller to handle all inputs and outputs of the system as well as logging all relevant data. The current system is set up so that a separate microcontroller handles dissolved oxygen and …


Planr.: Planar Learning Autonomous Navigation Robot, Gabrielle S. Santamorena, Daniel Kasman, Jesus Mercado, Ben Klave, Andrew Weisman, Anthony Fortner Jun 2019

Planr.: Planar Learning Autonomous Navigation Robot, Gabrielle S. Santamorena, Daniel Kasman, Jesus Mercado, Ben Klave, Andrew Weisman, Anthony Fortner

Computer Engineering

PLANR is a self-contained robot capable of mapping a space and generating 2D floor plans of a building while identifying objects of interest. It runs Robot Operating System (ROS) and houses four main hardware components. An Arduino Mega board handles the navigation, while an NVIDIA Jetson TX2, holds most of the processing power and runs ROS. An Orbbec Astra Pro stereoscopic camera is used for recognition of doors, windows and outlets and the RPLiDAR A3 laser scanner is able to give depth for wall detection and dimension measurements. The robot is intended to operate autonomously and without constant human monitoring …


Smart Dc Wall Outlet Design With Improved Load Voltage Detection, Patrick Donovon Granieri Jun 2019

Smart Dc Wall Outlet Design With Improved Load Voltage Detection, Patrick Donovon Granieri

Master's Theses

A standard home in the United States has access to the 120V AC power grid for use with home appliances. Many electronics used at home are powered by a DC power supply, which loses energy in the conversion from AC power. The DC House project avoids any conversion between AC and DC by storing energy in batteries as DC power and supplying it directly to DC appliances. While AC systems feature a standardized output voltage, no such standard exists for DC systems. The Smart DC Wall Outlet solves this by automatically adjusting its output voltage to meet any required DC …


Low-Energy Acceleration Of Binarized Convolutional Neural Networks Using A Spin Hall Effect Based Logic-In-Memory Architecture, Ashkan Samiee, Payal Borulkar, Ronald F. Demara, Peiyi Zhao, Yu Bai May 2019

Low-Energy Acceleration Of Binarized Convolutional Neural Networks Using A Spin Hall Effect Based Logic-In-Memory Architecture, Ashkan Samiee, Payal Borulkar, Ronald F. Demara, Peiyi Zhao, Yu Bai

Engineering Faculty Articles and Research

Deep Learning (DL) offers the advantages of high accuracy performance at tasks such as image recognition, learning of complex intelligent behaviors, and large-scale information retrieval problems such as intelligent web search. To attain the benefits of DL, the high computational and energy-consumption demands imposed by the underlying processing, interconnect, and memory devices on which software-based DL executes can benefit substantially from innovative hardware implementations. Logic-in-Memory (LIM) architectures offer potential approaches to attaining such throughput goals within area and energy constraints starting with the lowest layers of the hardware stack. In this paper, we develop a Spintronic Logic-in-Memory (S-LIM) XNOR neural …


Hardware Ip Classification Through Weighted Characteristics, Brendan Mcgeehan May 2019

Hardware Ip Classification Through Weighted Characteristics, Brendan Mcgeehan

Graduate Theses and Dissertations

Today’s business model for hardware designs frequently incorporates third-party Intellectual Property (IP) due to the many benefits it can bring to a company. For instance, outsourcing certain components of an overall design can reduce time-to-market by allowing each party to specialize and perfect a specific part of the overall design. However, allowing third-party involvement also increases the possibility of malicious attacks, such as hardware Trojan insertion. Trojan insertion is a particularly dangerous security threat because testing the functionality of an IP can often leave the Trojan undetected. Therefore, this thesis work provides an improvement on a Trojan detection method known …


Design Of Remote Datalogger Connection And Live Data Tweeting System, Zachary Wofford May 2019

Design Of Remote Datalogger Connection And Live Data Tweeting System, Zachary Wofford

Biological and Agricultural Engineering Undergraduate Honors Theses

Low-Impact Development (LID) is an attempt to sustainably respond to the potential hazards posed by urban expansion. Green roofs are an example of LID design meant to reduce the amount of runoff from storm events that are becoming more intense and less predictable while also providing insulation to buildings. LID has not yet been widely adopted as it is often a more expensive alternative to conventional infrastructure (Bowman et. al., 2009). However, its benefits are apparent. The University of Arkansas Honors College awarded a grant to research the large green roof atop Hillside Auditorium. One part of this grant is …


Design Of A Model Rocket Flight Logging System And In-Air Deployable Rover, Sirus Negahban May 2019

Design Of A Model Rocket Flight Logging System And In-Air Deployable Rover, Sirus Negahban

Honors Theses

The goal of the project laid out in this paper is to develop a model rocket range and altitude tracking system and a payload for said rocket which conducts an experiment of some scientific merit. The requirements for the project are defined by the rules of an international model rocket design and build competition for undergraduate and graduate students. This paper presents a design to accomplish the specified goals to the standards of the competition rule set, for use by the Union College Rocket Team at the competition. First, an off-the-shelf flight computer is purchased to implement the range and …


Graph-Based Temporal Analysis In Digital Forensics, Nikolai A. Adderley Mar 2019

Graph-Based Temporal Analysis In Digital Forensics, Nikolai A. Adderley

Theses and Dissertations

Establishing a timeline as part of a digital forensics investigation is a vital part of understanding the order in which system events occurred. However, most digital forensics tools present timelines as histogram or as raw artifacts. Consequently, digital forensics examiners are forced to rely on manual, labor-intensive practices to reconstruct system events. Current digital forensics analysis tools are at their technological limit with the increasing storage and complexity of data. A graph-based timeline can present digital forensics evidence in a structure that can be immediately understood and effortlessly focused. This paper presents the Temporal Analysis Integration Management Application (TAIMA) to …


Instantaneous Bandwidth Expansion Using Software Defined Radios, Nicholas D. Everett Mar 2019

Instantaneous Bandwidth Expansion Using Software Defined Radios, Nicholas D. Everett

Theses and Dissertations

The Stimulated Unintended Radiated Emissions (SURE) process has been proven capable of classifying a device (e.g. a loaded antenna) as either operational or defective. Currently, the SURE process utilizes a specialized noise radar which is bulky, expensive and not easily supported. With current technology advancements, Software Defined Radios (SDRs) have become more compact, more readily available and significantly cheaper. The research here examines whether multiple SDRs can be integrated to replace the current specialized ultra-wideband noise radar used with the SURE process. The research specifically targets whether or not multiple SDR sub-band collections can be combined to form a wider …


Ict: In-Field Calibration Transfer For Air Quality Sensor Deployments, Yun Cheng, Xiaoxi He, Zimu Zhou, Lothar Thiele Mar 2019

Ict: In-Field Calibration Transfer For Air Quality Sensor Deployments, Yun Cheng, Xiaoxi He, Zimu Zhou, Lothar Thiele

Research Collection School Of Computing and Information Systems

Recent years have witnessed a growing interest in urban air pollution monitoring, where hundreds of low-cost air quality sensors are deployed city-wide. To guarantee data accuracy and consistency, these sensors need periodic calibration after deployment. Since access to ground truth references is often limited in large-scale deployments, it is difficult to conduct city-wide post-deployment sensor calibration. In this work we propose In-field Calibration Transfer (ICT), a calibration scheme that transfers the calibration parameters of source sensors (with access to references) to target sensors (without access to references). On observing that (i) the distributions of ground truth in both source and …


A Comparative Study Of Wireless Star Networks Implemented With Current Wireless Protocols, Sizen Neupane Feb 2019

A Comparative Study Of Wireless Star Networks Implemented With Current Wireless Protocols, Sizen Neupane

Masters Theses

Wireless communication is one of the most advanced technological developments of this era. Wireless technology enables both short-range and long-range services. Today, there are several different wireless communication technologies in existence. Each has its characteristics different from another one. This thesis will implement three short-range wireless technologies in star connection and compare the performance in the wireless network.

For this thesis, the performance of three different RF protocols - a proprietary packet protocol called Enhanced ShockBurst in nRF24L01+, Bluetooth Low Energy, and a special Wi- Fi protocol ESP-Now was compared. The general concept was to establish a star network for …


Annual Report 2018-2019, Depaul University College Of Computing And Digital Media Jan 2019

Annual Report 2018-2019, Depaul University College Of Computing And Digital Media

CDM Annual Reports

LETTER FROM THE DEAN

I am pleased to share with you the 2018-19 College of Computing and Digital Media (CDM) annual report, highlighting the important work done by our faculty, students, and staff. We’ve said this before, and we’ll say it again: it was a big year. In 2018-19, programs across all three of our schools (Computing, Cinematic Arts, and Design) were ranked nationally. Our faculty were published in dozens of scholarly journals, screened their films over 100 times, and had their work exhibited globally. Student and alumni accomplishments included an Emmy nomination, a first place win in a Department …


Uncertainty Theory Based Reliability-Centric Cyber-Physical System Design, Houbing Song, Ya Jiang, Mingzhe Wang, Xun Jiao, Hui Kong, Rui Wang, Yongxin Liu, Jian Wang, Jiaguang Sun Jan 2019

Uncertainty Theory Based Reliability-Centric Cyber-Physical System Design, Houbing Song, Ya Jiang, Mingzhe Wang, Xun Jiao, Hui Kong, Rui Wang, Yongxin Liu, Jian Wang, Jiaguang Sun

Publications

Cyber-physical systems (CPSs) are built from, and depend upon, the seamless integration of software and hardware components. The most important challenge in CPS design and verification is to design CPS to be reliable in a variety of uncertainties, i.e., unanticipated and rapidly evolving environments and disturbances. The costs, delays and reliability of the designed CPS are highly dependent on software-hardware partitioning in the design. The key challenges in partitioning CPSs is that it is difficult to formalize reliability characterization in the same way as the uncertain cost and time delay.

In this paper, we propose a new CPS design paradigm …


Safe Pass, Alycia Riese, Julia Hariharan, Greg Synek, Jonathan Hall Jan 2019

Safe Pass, Alycia Riese, Julia Hariharan, Greg Synek, Jonathan Hall

Williams Honors College, Honors Research Projects

The purpose of this project is to design a sensor to be mounted on Class IV and higher vehicles to detect on-coming traffic. If traffic has been detected, the system is to warn drivers behind the stopped vehicle that passing is unsafe. The vehicle detection is to be implemented using a LiDAR detection method along with signal processing. A wireless transceiver is to transmit from the front radar module to the rear warning indicator module when the conditions are unsafe for passing. The project goals are to increase road safety and maintain traffic flow. The report details the challenges due …


Smart Parking Deck, Ryne Turner, Matthew Mcdade, Julie Aichinger, Laveréna Wienclaw Jan 2019

Smart Parking Deck, Ryne Turner, Matthew Mcdade, Julie Aichinger, Laveréna Wienclaw

Williams Honors College, Honors Research Projects

The Smart Parking Deck employs elementary circuit design elements and mobile application development. Each device module uses laser proximity sensors to check the availability of an individual parking space and a Zigbee unit to communicate with the adjacent device module. The modules are connected to a network hub that manages all of the incoming and outgoing parking data. This data is displayed on the mobile application. The system is easily manageable and energy efficient, significantly decreasing the costs associated with other smart parking systems on the market. This system is aimed at decreasing commute time for students by allowing them …