Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Environmental Sciences

2011

Mechanical and Aerospace Engineering Faculty Publications

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Understanding Industrial Energy Use Through Lean Energy Analysis, Brian Abels, Franc Server, J. Kelly Kissock, Dawit Ayele Apr 2011

Understanding Industrial Energy Use Through Lean Energy Analysis, Brian Abels, Franc Server, J. Kelly Kissock, Dawit Ayele

Mechanical and Aerospace Engineering Faculty Publications

Due to rising energy costs and global climate change, many industries seek to improve their energy efficiency. This paper describes a three-step method to analyze utility billing, weather, and production data to understand a company’s energy performance over time. The method uses regression modeling of utility billing data against weather and production data. The regression models are then driven with typical weather and production data to calculate the ‘normal annual consumption’, NAC. These steps are repeated on sequential sets of 12 months of data to generate a series of ‘sliding’ NACs and regression coefficients. The method can quantify successful energy …


Measuring Progress With Normalized Energy Intensity, Nathan Lammers, J. Kelly Kissock, Brian Abels, Franc Server Apr 2011

Measuring Progress With Normalized Energy Intensity, Nathan Lammers, J. Kelly Kissock, Brian Abels, Franc Server

Mechanical and Aerospace Engineering Faculty Publications

Energy standard ISO 50001 will require industries to quantify improvement in energy intensity to qualify for certification. This paper describes a four-step method to analyze utility billing, weather, and production data to quantify a company's normalized energy intensity over time. The method uses 3-pararameter change-point regression modeling of utility billing data against weather and production data to derive energy signature equations. The energy signature equation is driven by typical weather and production data to calculate the 'normal annual consumption', NAC, and divided by typical production to calculate 'normalized energy intensity' NEI. These steps are repeated on sequential sets of 12 …


Optimizing Compressed Air Storage For Energy Efficiency, Brian Abels, J. Kelly Kissock Apr 2011

Optimizing Compressed Air Storage For Energy Efficiency, Brian Abels, J. Kelly Kissock

Mechanical and Aerospace Engineering Faculty Publications

Compressed air storage is an important, but often misunderstood, component of compressed air systems. This paper discusses methods to properly size compressed air storage in load-unload systems to avoid short cycling and reduce system energy use. First, key equations relating storage, pressure, and compressed air flow are derived using fundamental thermodynamic relations. Next, these relations are used to calculate the relation between volume of storage and cycle time in load-unload compressors. It is shown that cycle time is minimized when compressed air demand is 50% of compressor capacity. The effect of pressure drop between compressor system and storage on cycle …


Improving Compressed Air Energy Efficiency In Automotive Plants: Practical Examples And Implementation, Nasr Alkadi, J. Kelly Kissock Apr 2011

Improving Compressed Air Energy Efficiency In Automotive Plants: Practical Examples And Implementation, Nasr Alkadi, J. Kelly Kissock

Mechanical and Aerospace Engineering Faculty Publications

The automotive industry is the largest industry in the United States in terms of the dollar value of production [1]. U.S. automakers face tremendous pressure from foreign competitors, which have an increasing manufacturing presence in this country. The Big Three North American Original Equipment Manufacturers (OEMs)-General Motors, Ford, and Chrysler-are reacting to declining sales figures and economic strain by working more efficiently and seeking out opportunities to reduce production costs without negatively affecting the production volume or the quality of the product. Successful, cost-effective investment and implementation of the energy efficiency technologies and practices meet the challenge of maintaining the …