Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Environmental Sciences

PDF

Wayne State University

Silicon anode

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Development Of Silicon-Based Anodes And In-Situ Characterization Techniques For Lithium Ion Batteries, Jinho Yang Jan 2014

Development Of Silicon-Based Anodes And In-Situ Characterization Techniques For Lithium Ion Batteries, Jinho Yang

Wayne State University Dissertations

Development of lithium ion batteries (LIBs) with higher capacity has been booming worldwide, as growing concerns about environmental issues and increasing petroleum costs. The demands for the LIBs include high energy and power densities, and better cyclic stability in order to meet a wide range of applications, such as portable devices and electric vehicles. Silicon has recently been explored as a promising anode material due to its low discharge potential (<0.4 V) and high specific capacity (4200 mAh g-1). The capacity of silicon potentially exceeds more than 10 times of the conventional graphite anode (372 mAh g-1). However, the silicon anode experiences huge volume …


Nano-Silicon/Graphene Composite Anodes For Enhanced Performance Lithium Ion Batteries, Rhet Joseph Caballes De Guzman Jan 2013

Nano-Silicon/Graphene Composite Anodes For Enhanced Performance Lithium Ion Batteries, Rhet Joseph Caballes De Guzman

Wayne State University Dissertations

The ever evolving technological applications such as with portable electronics and electric vehicles have led to increasing energy demands that have proven the existing commercial LIB capacity insufficient. Recently, the most promising anode material to substitute the traditional graphite is Si. As an anode Si has low discharge potential and theoretical the highest known theoretical capacity (>10 fold of graphite). However, due to the increased accommodated Li+ during charge-discharge reactions, silicon's volume varies up to 400%, causing pulverization and loss of electrical contact.

This dissertation focuses on a systematic approach in developing effective means to utilize Si for improved …