Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Bioaerosol Size As A Potential Determinant Of Airborne E. Coli Viability Under Ultraviolet Germicidal Irradiation And Ozone Disinfection, Weixing Hao, Yue-Wern Huang, Yang Wang Apr 2024

Bioaerosol Size As A Potential Determinant Of Airborne E. Coli Viability Under Ultraviolet Germicidal Irradiation And Ozone Disinfection, Weixing Hao, Yue-Wern Huang, Yang Wang

Biological Sciences Faculty Research & Creative Works

Ultraviolet germicidal irradiation (UVGI) and ozone disinfection are crucial methods for mitigating the airborne transmission of pathogenic microorganisms in high-risk settings, particularly with the emergence of respiratory viral pathogens such as SARS-CoV-2 and avian influenza viruses. This study quantitatively investigates the influence of UVGI and ozone on the viability of E. coli in bioaerosols, with a particular focus on how E. coli viability depends on the size of the bioaerosols, a critical factor that determines deposition patterns within the human respiratory system and the evolution of bioaerosols in indoor environments. This study used a controlled small-scale laboratory chamber where E. …


Wearable Mxene-Graphene Sensing Of Influenza And Sars-Cov-2 Virus In Air And Breath: From Lab To Clinic, Yanxiao Li, Zhekun Peng, Jiaoli Li, Congjie Wei, Shangbin Liu, Weixing Hao, Huanyu Cheng, Casey Burton, Yang Wang, Yue-Wern Huang, Chang Soo Kim, Fang Yao Stephen Hou, Donghyun (Bill) Kim, Chenglin Wu Feb 2024

Wearable Mxene-Graphene Sensing Of Influenza And Sars-Cov-2 Virus In Air And Breath: From Lab To Clinic, Yanxiao Li, Zhekun Peng, Jiaoli Li, Congjie Wei, Shangbin Liu, Weixing Hao, Huanyu Cheng, Casey Burton, Yang Wang, Yue-Wern Huang, Chang Soo Kim, Fang Yao Stephen Hou, Donghyun (Bill) Kim, Chenglin Wu

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

The rapidly expanding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants demand a continuous monitoring method through portable and wearable devices. Utilizing the rich surface chemistry and high chemical-to-electrical signal conversion of 2D MXene-graphene heterostructure thin films, a field-effect-transistor (FET) sensor, which has a flexible substrate to be assembled onto the mask and combines with a Bluetooth system for wireless transmission is developed, to detect the influenza and SARS-CoV-2 viruses in air and breath. At first, the developed sensors are examined in the laboratory through direct contact with sensing targets in solution form. The results show a low …


Advancing Occupational Health In Mining: Investigating Low-Cost Sensors Suitability For Improved Coal Dust Exposure Monitoring, Mirza Muhammad Zaid, Nana Amoah, Ashish Kakoria, Yang Wang, Guang Xu Feb 2024

Advancing Occupational Health In Mining: Investigating Low-Cost Sensors Suitability For Improved Coal Dust Exposure Monitoring, Mirza Muhammad Zaid, Nana Amoah, Ashish Kakoria, Yang Wang, Guang Xu

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Exposure to coal dust in underground coal mines poses significant health risks to workers, including the development of diseases such as coal workers' pneumoconiosis and silicosis. Current available methods for monitoring coal dust exposure are expensive and time-consuming, necessitating the exploration of alternative approaches. Low-cost light scattering particulate matter sensors offer a promising solution, and its development in recent years has demonstrated some success in air quality monitoring However, its application in sensing coal particles is limited partially due to that the operating condition in a mine is different than the atmosphere. Thus, the objective of this paper is to …