Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 43

Full-Text Articles in Engineering

System And Methods For Ventilation Through A Body Cavity, Mark A. Borden, Benjamin S. Terry Nov 2018

System And Methods For Ventilation Through A Body Cavity, Mark A. Borden, Benjamin S. Terry

Department of Mechanical and Materials Engineering: Faculty Publications

A system and methods for the delivery of oxygen through a body cavity of a subject using oxygen microbubbles . Through circulation of oxygen microbubbles through the body cavity , oxygen and carbon dioxide exchange may occur . Overall improvement in extending survival rate time during emergency situations caused by pulmonary or similar oxygen - intake restricting injury and / or failure may be achieved through use of the invented system and methods .


Hemodynamics And Pathology Of An Enlarging Abdominal Aortic Aneurysm Model In Rabbits, Hongmei Chen, Yonghua Bi, Siyeong Yu, Linxia Gu, Xiaoyan Zhu, Xinwei Han Oct 2018

Hemodynamics And Pathology Of An Enlarging Abdominal Aortic Aneurysm Model In Rabbits, Hongmei Chen, Yonghua Bi, Siyeong Yu, Linxia Gu, Xiaoyan Zhu, Xinwei Han

Department of Mechanical and Materials Engineering: Faculty Publications

Hemodynamics may play an essential role in the initiation and progression of abdominal aortic aneurysm (AAA). We aimed to study the mechanism of self-healing process by the changes of hemodynamics and pathology in an enlarging AAA in rabbits. Seventy-two rabbits were randomly divided into three groups. Rabbits underwent extrinsic coarctation and received a 10-minute elastase incubation in Group A and Group B. Absorbable suture used in Group A was terminated by balloon dilation at week 4. Diameter was measured after 1, 3, 5, and 15 weeks, computational fluid dynamics analysis was performed at week 3 and week 15. Rabbits were …


Techniques To Stimulate And Interrogate Cell–Cell Adhesion Mechanics, Ruiguo Yang, Joshua A. Broussard, Kathleen J. Green, Horacio D. Espinosa Oct 2018

Techniques To Stimulate And Interrogate Cell–Cell Adhesion Mechanics, Ruiguo Yang, Joshua A. Broussard, Kathleen J. Green, Horacio D. Espinosa

Department of Mechanical and Materials Engineering: Faculty Publications

Cell–cell adhesions maintain the mechanical integrity of multicellular tissues and have recently been found to act as mechanotransducers, translating mechanical cues into biochemical signals. Mechanotransduction studies have primarily focused on focal adhesions, sites of cell-substrate attachment. These studies leverage technical advances in devices and systems interfacing with living cells through cell–extracellular matrix adhesions. As reports of aberrant signal transduction originating from mutations in cell–cell adhesion molecules are being increasingly associated with disease states, growing attention is being paid to this intercellular signaling hub. Along with this renewed focus, new requirements arise for the interrogation and stimulation of cell–cell adhesive junctions. …


Strong And Tough Continuous Nanofibers, Yuris Dzenis Sep 2018

Strong And Tough Continuous Nanofibers, Yuris Dzenis

Department of Mechanical and Materials Engineering: Faculty Publications

Amethod of fabricating a continuous nanofiber is described . The method includes preparing a solution of one or more polymers and one or more solvents and electrospinning the solution by discharging the solution through one or more liquid jets into an electric field to yield one or more continuous nanofibers . The electrospinning process ( i ) highly orients one or more polymer chains in the one or more continuous nanofibers along a fiber axis of the one or more continuous nanofibers , and ( ii ) suppresses polymer crystallization in the one or more continuous nanofibers . The one …


Tunable Plasmonic Resonances In Highly Porous Nano-Bamboo Si-Au Superlattice-Type Thin Films, Ufuk Kılıç, Alyssa Mock, René Feder, Derek Sekora, Matthew J. Hilfiker, Rafal Korlacki, Eva Schubert, Christos Argyropoulos, Mathias Schubert Jul 2018

Tunable Plasmonic Resonances In Highly Porous Nano-Bamboo Si-Au Superlattice-Type Thin Films, Ufuk Kılıç, Alyssa Mock, René Feder, Derek Sekora, Matthew J. Hilfiker, Rafal Korlacki, Eva Schubert, Christos Argyropoulos, Mathias Schubert

Department of Electrical and Computer Engineering: Faculty Publications

We report on fabrication of spatially-coherent columnar plasmonic nanostructure superlattice-type thin films with high porosity and strong optical anisotropy using glancing angle deposition. Subsequent and repeated depositions of silicon and gold lead to nanometer-dimension subcolumns with controlled lengths. The superlattice-type columns resemble bamboo structures where smaller column sections of gold form junctions sandwiched between larger silicon column sections (“nano-bamboo”). We perform generalized spectroscopic ellipsometry measurements and finite element method computations to elucidate the strongly anisotropic optical properties of the highly-porous nano-bamboo structures. The occurrence of a strongly localized plasmonic mode with displacement pattern reminiscent of a dark quadrupole mode is …


Near-Field Heat Transfer Enabled Nanothermomechanical Memory And Logic Devices, Sidy Ndao, Mahmoud Elzouka Jul 2018

Near-Field Heat Transfer Enabled Nanothermomechanical Memory And Logic Devices, Sidy Ndao, Mahmoud Elzouka

Department of Mechanical and Materials Engineering: Faculty Publications

A thermomechanical memory / logic device is disclosed . In embodiments , the thermomechanical device includes a first thermally controlled terminal ( e . g . , hot terminal ) ; a second thermally controlled terminal ( e . g . , cool terminal / base ) ; a stem or other structure that can be thermally expanded connected to the cool terminal ; and a thermal conductive head coupled to the stem . The head can exchange heat with the hot terminal . The stem and head are between the first thermally controlled terminal and the second thermally controlled …


Artificial Neural Network And Finite Element Modeling Of Nanoindentation Tests On Silica, Kianoosh Koocheki Jul 2018

Artificial Neural Network And Finite Element Modeling Of Nanoindentation Tests On Silica, Kianoosh Koocheki

Department of Civil and Environmental Engineering: Dissertations, Theses, and Student Research

Two major forms of Silica include the crystalline form named Quartz which consist of the sand grains in nature, and amorphous form named Silica Glass or Fused Silica which is commonly known as glass. Fused Silica is an amorphous crystal that can show plastic behavior at micro-scale despite its brittle behavior in large scales. Due to the amorphous and ductile nature of Fused Silica, this behavior may not be explained well using the traditional dislocation-based mechanism of plasticity for crystalline solids. The crystal plasticity happens due to shear stress and stored energy in the material as dislocations which does not …


Smart Bandage For Monitoring And Treatment Of Chronic Wounds, Pooria Mostafalu, Ali Tamayol, Rahim Rahimi, Manuel Ochoa, Akbar Khalilpour, Gita Kiaee, Iman K. Yazdi, Sara Bagherifard, Mehmet R. Dokmeci, Babak Ziaie, Sameer R. Sonkusale, Ali Khademhosseini Jul 2018

Smart Bandage For Monitoring And Treatment Of Chronic Wounds, Pooria Mostafalu, Ali Tamayol, Rahim Rahimi, Manuel Ochoa, Akbar Khalilpour, Gita Kiaee, Iman K. Yazdi, Sara Bagherifard, Mehmet R. Dokmeci, Babak Ziaie, Sameer R. Sonkusale, Ali Khademhosseini

Department of Mechanical and Materials Engineering: Faculty Publications

Chronic wounds are a major health concern and they affect the lives of more than 25 million people in the United States. They are susceptible to infection and are the leading cause of nontraumatic limb amputations worldwide. The wound environment is dynamic, but their healing rate can be enhanced by administration of therapies at the right time. This approach requires real-time monitoring of the wound environment with on-demand drug delivery in a closed-loop manner. In this paper, a smart and automated flexible wound dressing with temperature and pH sensors integrated onto flexible bandages that monitor wound status in real-time to …


Prevascularization Of 3d Printed Bone Scaffolds By Bioactive Hydrogels And Cell Co-Culture, Mitchell Kuss, Shaohua Wu, Ying Wang, Jason B. Untrauer, Wenlong Li, Jung Yul Lim, Bin Duan Jul 2018

Prevascularization Of 3d Printed Bone Scaffolds By Bioactive Hydrogels And Cell Co-Culture, Mitchell Kuss, Shaohua Wu, Ying Wang, Jason B. Untrauer, Wenlong Li, Jung Yul Lim, Bin Duan

Department of Mechanical and Materials Engineering: Faculty Publications

Vascularization is a fundamental prerequisite for large bone construct development and remains one of the main challenges of bone tissue engineering. Our current study presents the combination of 3D printing technique with a hydrogel-based prevascularization strategy to generate prevascularized bone constructs. Human adipose derived mesenchymal stem cells (ADMSC) and human umbilical vein endothelial cells (HUVEC) were encapsulated within our bioactive hydrogels, and the effects of culture conditions on in vitro vascularization were determined. We further generated composite constructs by forming 3D printed polycaprolactone/hydroxyapatite scaffolds coated with cell-laden hydrogels and determined how the co-culture affected vascularization and osteogenesis. It was demonstrated …


Interface Structure And Deformation Mechanisms Of Mg/Nb Multilayers, Xinyan Xie Jul 2018

Interface Structure And Deformation Mechanisms Of Mg/Nb Multilayers, Xinyan Xie

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Magnesium (Mg) and its alloys, as the lightest structural materials, are very attractive for a range of weight sensitive applications, such as aircraft engine, transportation industry and so on. However, their further applications are limited due to the weak properties, such as the low strength and poor ductility. In recent years, advanced techniques aiming at the modification of the microstructures, have been developed to promote the properties of Mg and its alloys, such as modifying the texture, refining the grain size, forming the intermetallic phase, and introducing the interfaces or stacking faults into the systems. Constructing Mg/Nb multilayers, which introduces …


Migration Resistance Of Esophageal Stents: The Role Of Stent Design, Hozhabr Mozafari, Pengfei Dong, Shijia Zhao, Yonghua Bi, Xinwei Han, Linxia Gu Jun 2018

Migration Resistance Of Esophageal Stents: The Role Of Stent Design, Hozhabr Mozafari, Pengfei Dong, Shijia Zhao, Yonghua Bi, Xinwei Han, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

Objective: Stenting is one of the major treatments for malignant esophageal cancer. However, stent migration compromises clinical outcomes. A flared end design of the stent diminishes its migration. The goal of this work is to quantitatively characterize stent migration to develop new strategies for better clinical outcomes.

Methods: An esophageal stent with flared ends and a straight counterpart were virtually deployed in an esophagus with asymmetric stricture using the finite element method. The resulted esophagus shape, wall stress, and migration resistance force of the stent were quantified and compared.

Results: The lumen gain for both the flared stent and the …


System And Method For Controlling Operations Of Air - Conditioning System, Mouhacine Benosman, Petros Boufounos, Boris Kramer, Piyush Grover May 2018

System And Method For Controlling Operations Of Air - Conditioning System, Mouhacine Benosman, Petros Boufounos, Boris Kramer, Piyush Grover

Department of Mechanical and Materials Engineering: Faculty Publications

A method controls an operation of an air - conditioning system generating airflow in a conditioned environment . The method updates a model of airflow dynamics connecting values of flow and temperature of air conditioned during the operation of the air - conditioning system . The model is updated interactively iteratively to reduce an error between values of the airflow determined according to the model and values of the airflow measured during the operation . Next , the method models the airflow using the updated model and controls the operation of the air - conditioning system using the model .


Concomitant Crystallization In Propylene/Ethylene Random Copolymer With Strong Flow At Elevated Temperatures, Lirong Zheng, Lucia Fernandez-Ballester, Gerrit W. M. Peters, Zhe Ma May 2018

Concomitant Crystallization In Propylene/Ethylene Random Copolymer With Strong Flow At Elevated Temperatures, Lirong Zheng, Lucia Fernandez-Ballester, Gerrit W. M. Peters, Zhe Ma

Department of Mechanical and Materials Engineering: Faculty Publications

Flow-induced crystallization of α- and γ-phases was studied for a propylene/ethylene random copolymer with 3.4 mol % ethylene at two high temperatures of 132 and 142 °C by combining a pressure-driven slit flow device with real-time synchrotron wide-angle X-ray diffraction. At 132 °C, it was found that both α- and γ-phases were generated at shear stresses ranging from 0.091 to 0.110 MPa and that the γ-phase always appeared later than the α-phase. However, for 142 °C and the same stresses, only the α-phase formed. Only upon cooling the partially crystallized copolymer did the γ-phase emerge. The lack of γ-crystals obtained …


Critical-Point Model Dielectric Function Analysis Of Wo3 Thin Films Deposited By Atomic Layer Deposition Techniques, Ufuk Kılıç, Derek Sekora, Alyssa Mock, Rafał Korlacki, Elena M. Echeverría, Natale J. Ianno, Eva Schubert, Mathias Schubert May 2018

Critical-Point Model Dielectric Function Analysis Of Wo3 Thin Films Deposited By Atomic Layer Deposition Techniques, Ufuk Kılıç, Derek Sekora, Alyssa Mock, Rafał Korlacki, Elena M. Echeverría, Natale J. Ianno, Eva Schubert, Mathias Schubert

Department of Electrical and Computer Engineering: Faculty Publications

WO3 thin films were grown by atomic layer deposition and spectroscopic ellipsometry data gathered in the photon energy range of 0.72-8.5 eV and from multiple samples was utilized to determine the frequency dependent complex-valued isotropic dielectric function for WO3. We employ a critical-point model dielectric function analysis and determine a parameterized set of oscillators and compare the observed critical-point contributions with the vertical transition energy distribution found within the band structure of WO3 calculated by density functional theory. We investigate surface roughness with atomic force microscopy and compare to ellipsometric determined effective roughness layer thickness.


Rare Earth - Free Permanent Magnetic Material, Laura H. Lewis, Jeffrey E. Shield, Katayun Barmak Viziri Apr 2018

Rare Earth - Free Permanent Magnetic Material, Laura H. Lewis, Jeffrey E. Shield, Katayun Barmak Viziri

Department of Mechanical and Materials Engineering: Faculty Publications

The invention provides rare earth - free permanent magnetic materials and methods of making them . The materials can be used to produce magnetic structures for use in a wide variety of commercial applications , such as motors , generators , and other electromechanical and electronic devices . Magnets fabricated using the materials can be substituted for magnets requiring rare earth elements that are costly and in limited supply . The invention provides two different types of magnetic materials . The first type is based on an iron - nickel alloy that is doped with one or more doping elements …


Method Of Fabricating A Continuous Nanofiber, Yuris Dzenis Apr 2018

Method Of Fabricating A Continuous Nanofiber, Yuris Dzenis

Department of Mechanical and Materials Engineering: Faculty Publications

A method of fabricating a continuous nanofiber is described . The method includes preparing a solution of one or more polymers and one or more solvents and electrospinning the solution by discharging the solution through one or more liquid jets into an electric field to yield one or more continuous nanofibers . The electrospinning process ( i ) highly orients one or more polymer chains in the one or more continuous nanofibers along a fiber axis of the one or more continuous nanofibers , and ( ii ) suppresses polymer crystallization in the one or more continuous nanofibers . The …


Method For Data - Driven Learning - Based Control Of Hvac Systems Using High - Dimensional Sensory Observations, Amir-Massoud Farahmand, Saleh Nabi, Piyush Grover, Daniel Nikolaev Nikovski Apr 2018

Method For Data - Driven Learning - Based Control Of Hvac Systems Using High - Dimensional Sensory Observations, Amir-Massoud Farahmand, Saleh Nabi, Piyush Grover, Daniel Nikolaev Nikovski

Department of Mechanical and Materials Engineering: Faculty Publications

A controller for controlling an operation of an air - conditioning system conditioning an indoor space includes a data input to receive state data of the space at multiple points in the space , a memory to store a code of a reinforcement learning algorithm and a history of the state data and a history of control commands having been applied to the air - conditioning system , wherein the history of the control commands is associated with the state data and history of rewards , a processor coupled to the memory determines a value function outputting a cumulative value …


The Effect Of Poly (Glycerol Sebacate) Incorporation Within Hybrid Chitin–Lignin Sol–Gel Nanofibrous Scaffolds, Tuerdimaimaiti Abudula, Lassaad Gzara, Giovanna Simonetti, Ahmed Alshahrie, Numan Salah, Pierfrancesco Morganti, Angelo Chianese, Afsoon Fallahi, Ali Tamayol, Sidi A. Bencherif, Adnan Memic Mar 2018

The Effect Of Poly (Glycerol Sebacate) Incorporation Within Hybrid Chitin–Lignin Sol–Gel Nanofibrous Scaffolds, Tuerdimaimaiti Abudula, Lassaad Gzara, Giovanna Simonetti, Ahmed Alshahrie, Numan Salah, Pierfrancesco Morganti, Angelo Chianese, Afsoon Fallahi, Ali Tamayol, Sidi A. Bencherif, Adnan Memic

Department of Mechanical and Materials Engineering: Faculty Publications

Chitin and lignin primarily accumulate as bio-waste resulting from byproducts of crustacean crusts and plant biomass. Recently, their use has been proposed for diverse and unique bioengineering applications, amongst others. However, their weak mechanical properties need to be improved in order to facilitate their industrial utilization. In this paper, we fabricated hybrid fibers composed of a chitin–lignin (CL)-based sol–gel mixture and elastomeric poly (glycerol sebacate) (PGS) using a standard electrospinning approach. Obtained results showed that PGS could be coherently blended with the sol–gel mixture to form a nanofibrous scaffold exhibiting remarkable mechanical performance and improved antibacterial and antifungal activity. The …


The Positive Role Of Curcumin-Loaded Salmon Nanoliposomes On The Culture Of Primary Cortical Neurons, Mahmoud Hasan, Shahrzad Latifi, Cyril J.F. Kahn, Ali Tamayol, Rouhollah Habibey, Elodie Passeri, Michel Linder, Elmira Arab-Tehrany Mar 2018

The Positive Role Of Curcumin-Loaded Salmon Nanoliposomes On The Culture Of Primary Cortical Neurons, Mahmoud Hasan, Shahrzad Latifi, Cyril J.F. Kahn, Ali Tamayol, Rouhollah Habibey, Elodie Passeri, Michel Linder, Elmira Arab-Tehrany

Department of Mechanical and Materials Engineering: Faculty Publications

Curcumin (diferuloylmethane) is a natural bioactive compound with many health-promoting benefits. However, its poor water solubility and bioavailability has limited curcumin’s biomedical application. In the present study, we encapsulated curcumin into liposomes, formed from natural sources (salmon lecithin), and characterized its encapsulation efficiency and release profile. The proposed natural carriers increased the solubility and the bioavailability of curcumin. In addition, various physico-chemical properties of the developed soft nanocarriers with and without curcumin were studied. Nanoliposome-encapsulated curcumin increased the viability and network formation in the culture of primary cortical neurons and decreased the rate of apoptosis.


Eigenstrain As A Mechanical Set-Point Of Cells, Shengmao Lin, Marsha C. Lampi, Cynthia A. Reinhart-King, Gary C.P. Tsui, Jian Wang, Carl A. Nelson, Linxia Gu Feb 2018

Eigenstrain As A Mechanical Set-Point Of Cells, Shengmao Lin, Marsha C. Lampi, Cynthia A. Reinhart-King, Gary C.P. Tsui, Jian Wang, Carl A. Nelson, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

Cell contraction regulates how cells sense their mechanical environment. We sought to identify the set-point of cell contraction, also referred to as tensional homeostasis. In this work, bovine aortic endothelial cells (BAECs), cultured on substrates with different stiffness, were characterized using traction force microscopy (TFM). Numerical models were developed to provide insights into the mechanics of cell–substrate interactions. Cell contraction was modeled as eigenstrain which could induce isometric cell contraction without external forces. The predicted traction stresses matched well with TFM measurements. Furthermore, our numerical model provided cell stress and displacement maps for inspecting the fundamental regulating mechanism of cell …


Ureteral Tunnel Length Versus Ureteral Orifice Configuration In The Determination Of Ureterovesical Junction Competence: A Computer Simulation Model, Carlos A. Villanueva, J. Tong, Carl A. Nelson, Linxia Gu Feb 2018

Ureteral Tunnel Length Versus Ureteral Orifice Configuration In The Determination Of Ureterovesical Junction Competence: A Computer Simulation Model, Carlos A. Villanueva, J. Tong, Carl A. Nelson, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

Introduction The long-held belief that a ureteral re-implant tunnel should be five times the diameter of the ureter, as proposed by Paquin in 1959, ignores the effect of the orifice on the occurrence of reflux. In 1969, Lyon proposed that the shape of the ureteral orifice (UO) is more important than the intravesical tunnel. However, both theories missed quantitative evidence from principles of physics. The goal of the current study was to test Lyon’s theory through numerical models (i.e. to quantify the sensitivity of ureterovesical junction (UVJ) competence to intravesical tunnel length and to the UO).

Materials and methods The …


Improved A-B10C2+XHY/Si P-N Heterojunction Performance After Neutron Irradiation, George Peterson, Qing Su, Yongqiang Wang, Natale J. Ianno, Peter Dowben, Michael Nastasi Jan 2018

Improved A-B10C2+XHY/Si P-N Heterojunction Performance After Neutron Irradiation, George Peterson, Qing Su, Yongqiang Wang, Natale J. Ianno, Peter Dowben, Michael Nastasi

Department of Mechanical and Materials Engineering: Faculty Publications

The impact of neutron irradiation, in the energy range of ~0.025 eV, on amorphous semiconducting partially dehydrogenated boron carbide (a-B10C2+xHy) on silicon p-n heterojunction diodes was investigated. The heterojunction devices were created by synthesizing a-B10C2+xHy via plasma enhanced chemical vapor deposition on n-type silicon. Unlike many electronic devices, the performance of the a-B10C2+xHy heterojunction diode improved with neutron irradiation, in spite of the large neutron cross section of 10B. There is also increased charge carrier lifetime of more than …


Excess Charge-Carrier Induced Instability Of Hybrid Perovskites, Yuze Lin, Bo Chen, Yanjun Fang, Jingjing Zhao, Chunxiong Bao, Zhenhua Yu, Yehao Deng, Peter N. Rudd, Yanfa Yan, Yongbo Yuan, Jinsong Huang Jan 2018

Excess Charge-Carrier Induced Instability Of Hybrid Perovskites, Yuze Lin, Bo Chen, Yanjun Fang, Jingjing Zhao, Chunxiong Bao, Zhenhua Yu, Yehao Deng, Peter N. Rudd, Yanfa Yan, Yongbo Yuan, Jinsong Huang

Department of Mechanical and Materials Engineering: Faculty Publications

Identifying the origin of intrinsic instability for organic–inorganic halide perovskites (OIHPs) is crucial for their application in electronic devices, including solar cells, photodetectors, radiation detectors, and light-emitting diodes, as their efficiencies or sensitivities have already been demonstrated to be competitive with commercial available devices. Here we show that free charges in OIHPs, whether generated by incident light or by current-injection from electrodes, can reduce their stability, while efficient charge extraction effectively stabilizes the perovskite materials. The excess of both holes and electrons reduce the activation energy for ion migration within OIHPs, accelerating the degradation of OIHPs, while the excess holes …


An Integrated Microstructural-Nanomechanical-Chemical Approach To Examine Material-Specific Characteristics Of Cementitious Interphase Regions, Mahdieh Khedmati, Yong-Rak Kim, Joseph A. Turner, Hani Alanazi, Charles Nguyen Jan 2018

An Integrated Microstructural-Nanomechanical-Chemical Approach To Examine Material-Specific Characteristics Of Cementitious Interphase Regions, Mahdieh Khedmati, Yong-Rak Kim, Joseph A. Turner, Hani Alanazi, Charles Nguyen

Department of Mechanical and Materials Engineering: Faculty Publications

Effective properties and structural performance of cementitious mixtures are substantially governed by the quality of the interphase region because it acts as a bridge transferring forces between aggregates and a binding matrix and is generally susceptible to damage. As alternative binding agents like alkali-activated precursors have obtained substantial attention in recent years, there is a growing need for fundamental knowledge to uncover interphase formation mechanisms. In this paper, two different types of binding materials, i.e., fly ash-based geopolymer and ordinary portland cement, were mixed with limestone aggregate to examine and compare the microstructures and nanomechanical properties of interphase region. To …


An Integrated Microstructural-Nanomechanical-Chemical Approach To Examine Material-Specific Characteristics Of Cementitious Interphase Regions, Mahdieh Khedmati, Yong-Rak Kim, Joesph A. Turner, Hani Alanazi, Charles Nguyen Jan 2018

An Integrated Microstructural-Nanomechanical-Chemical Approach To Examine Material-Specific Characteristics Of Cementitious Interphase Regions, Mahdieh Khedmati, Yong-Rak Kim, Joesph A. Turner, Hani Alanazi, Charles Nguyen

Department of Mechanical and Materials Engineering: Faculty Publications

Effective properties and structural performance of cementitious mixtures are substantially governed by the quality of the interphase region because it acts as a bridge transferring forces between aggregates and a binding matrix and is generally susceptible to damage. As alternative binding agents like alkali-activated precursors have obtained substantial attention in recent years, there is a growing need for fundamental knowledge to uncover interphase formation mechanisms. In this paper, two different types of binding materials, i.e., fly ash-based geopolymer and ordinary portland cement, were mixed with limestone aggregate to examine and compare the microstructures and nanomechanical properties of interphase region. To …


Molecular Doping Enabled Scalable Blading Of Efficient Hole-Transport-Layer-Free Perovskite Solar Cells, Wu-Qiang Wu, Qi Wang, Yanjun Fang, Yuchuan Shao, Shi Tang, Yehao Deng, Haidong Lu, Ye Liu, Tao Li, Zhibin Yang, Alexei Gruverman, Jinsong Huang Jan 2018

Molecular Doping Enabled Scalable Blading Of Efficient Hole-Transport-Layer-Free Perovskite Solar Cells, Wu-Qiang Wu, Qi Wang, Yanjun Fang, Yuchuan Shao, Shi Tang, Yehao Deng, Haidong Lu, Ye Liu, Tao Li, Zhibin Yang, Alexei Gruverman, Jinsong Huang

Department of Mechanical and Materials Engineering: Faculty Publications

The efficiencies of perovskite solar cells (PSCs) are now reaching such consistently high levels that scalable manufacturing at low cost is becoming critical. However, this remains challenging due to the expensive hole-transporting materials usually employed, and difficulties associated with the scalable deposition of other functional layers. By simplifying the device architecture, hole-transport-layer-free PSCs with improved photovoltaic performance are fabricated via a scalable doctor-blading process. Molecular doping of halide perovskite films improved the conductivity of the films and their electronic contact with the conductive substrate, resulting in a reduced series resistance. It facilitates the extraction of photoexcited holes from perovskite directly …


Visible Light Crosslinkable Human Hair Keratin Hydrogels, Kan Yue, Yanhui Liu, Batzaya Byambaa, Vaishali Singh, Wanjun Liu, Xiuyu Li, Yunxia Sun, Yu Shrike Zhang, Ali Tamayol, Peihua Zhang, Kee Woei Ng, Nasim Annabi, Ali Khademhosseini Jan 2018

Visible Light Crosslinkable Human Hair Keratin Hydrogels, Kan Yue, Yanhui Liu, Batzaya Byambaa, Vaishali Singh, Wanjun Liu, Xiuyu Li, Yunxia Sun, Yu Shrike Zhang, Ali Tamayol, Peihua Zhang, Kee Woei Ng, Nasim Annabi, Ali Khademhosseini

Department of Mechanical and Materials Engineering: Faculty Publications

Keratins extracted from human hair have emerged as a promising biomaterial for various biomedical applications, partly due to their wide availability, low cost, minimal immune response, and the potential to engineer autologous tissue constructs. However, the fabrication of keratin-based scaffolds typically relies on limited crosslinking mechanisms, such as via physical interactions or disulfide bond formation, which are time-consuming and result in relatively poor mechanical strength and stability. Here, we report the preparation of photocrosslinkable keratin-polyethylene glycol (PEG) hydrogels via the thiol-norbornene “click” reaction, which can be formed within one minute upon irradiation of visible light. The resulting keratin-PEG hydrogels showed …


Dislocations Interaction Induced Structural Instability In Intermetallic Al2cu, Qing Zhou, Jian Wang, Amit Misra, Ping Huang, Fei Wang, Kewei Xu Jan 2018

Dislocations Interaction Induced Structural Instability In Intermetallic Al2cu, Qing Zhou, Jian Wang, Amit Misra, Ping Huang, Fei Wang, Kewei Xu

Department of Mechanical and Materials Engineering: Faculty Publications

Intermetallic precipitates are widely used to tailor mechanical properties of structural alloys but are often destabilized during plastic deformation. Using atomistic simulations, we elucidate structural instability mechanisms of intermetallic precipitates associated with dislocation motion in a model system of Al2Cu. Interaction of non-coplanar <001> dislocation dipoles during plastic deformation results in anomalous reactions—the creation of vacancies accompanied with climb and collective glide of <001> dislocation associated with the dislocation core change and atomic shuffle—accounting for structural instability in intermetallic Al2Cu. This process is profound with decreasing separation of non-coplanar dislocations and increasing temperature and is likely to be …


Plaque Burden Influences Accurate Classification Of Fibrous Cap Atheroma By In-Vivo Optical Coherence Tomography In A Porcine Model Of Advanced Coronary Atherosclerosis., Christian B. Poulsen, Ryan M. Pedrigi, Nilesh Pareek, Ismail D. Kilic, Niels R. Holm, Jacob F. Bentzon, Hans Erik Botker, Erling Falk, Rob Krams, Ranil De Silva Jan 2018

Plaque Burden Influences Accurate Classification Of Fibrous Cap Atheroma By In-Vivo Optical Coherence Tomography In A Porcine Model Of Advanced Coronary Atherosclerosis., Christian B. Poulsen, Ryan M. Pedrigi, Nilesh Pareek, Ismail D. Kilic, Niels R. Holm, Jacob F. Bentzon, Hans Erik Botker, Erling Falk, Rob Krams, Ranil De Silva

Department of Mechanical and Materials Engineering: Faculty Publications

Advanced coronary atherosclerosis assessed by in-vivo optical coherence tomography (OCT) has not been directly compared with histology. In a porcine model with human-like coronary atherosclerosis we compared in-vivo OCT images with histology in five animals. We found a high sensitivity but modest specificity of OCT in classifying fibrous cap atheroma (FCA). The modest specificity was caused by misclassification of FCA lesions as pathological intimal thickening. The misclassification most frequently occurred when plaque burden exceeded ~20%. Compared with histology, OCT has high sensitivity but modest specificity for identifying FCA. The study suggests that plaque burden should be considered when interpreting OCT …


Flow Patterns Through Vascular Graft Models With And Without Cuffs, Chia Min Leong, Gary B. Nackman, Timothy Wei Jan 2018

Flow Patterns Through Vascular Graft Models With And Without Cuffs, Chia Min Leong, Gary B. Nackman, Timothy Wei

Department of Mechanical and Materials Engineering: Faculty Publications

The shape of a bypass graft plays an important role on its efficacy. Here, we investigated flow through two vascular graft designs±with and without cuff at the anastomosis. We conducted Digital Particle Image Velocimetry (DPIV) measurements to obtain the flow field information through these vascular grafts. Two pulsatile flow waveforms corresponding to cardiac cycles during the rest and the excitation states, with 10% and without retrograde flow out the proximal end of the native artery were examined. In the absence of retrograde flow, the straight end-to-side graft showed recirculation and stagnation regions that lasted throughout the full cardiac cycle with …