Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Engineering

Multiscale Modeling And Gaussian Process Regression For Applications In Composite Materials, Joshua Arp Aug 2023

Multiscale Modeling And Gaussian Process Regression For Applications In Composite Materials, Joshua Arp

All Dissertations

An ongoing challenge in advanced materials design is the development of accurate multiscale models that consider uncertainty while establishing a link between knowledge or information about constituent materials to overall composite properties. Successful models can accurately predict composite properties, reducing the high financial and labor costs associated with experimental determination and accelerating material innovation. Whereas early pioneers in micromechanics developed simplistic theoretical models to map these relationships, modern advances in computer technology have enabled detailed simulators capable of accurately predicting complex and multiscale phenomena.

This work advances domain knowledge via two means: firstly, through the development of high-fidelity, physics-based finite …


Mechanical Properties And Performance Of A Novel Nano-Engineered Unitized Composite With Quasi-Isotropic Layup, Brian Matthew Pudlo Mar 2023

Mechanical Properties And Performance Of A Novel Nano-Engineered Unitized Composite With Quasi-Isotropic Layup, Brian Matthew Pudlo

Theses and Dissertations

Carbon nanotubes (CNTs) exhibit outstanding mechanical, electrical, and thermal properties, but are a challenge to effectively implement into macroscopic composites for aerospace applications. This research investigates the mechanical properties and performance of a newly developed hybrid NanoStitch composite, alongside a control polymer matrix composite, at room temperature. Both composite material systems investigated in this work have quasi-isotropic layup. Monotonic tension-tofailure, tension-tension fatigue, and creep tests were performed to characterize the performance of the composites under cyclic and sustained loading. Experimental results obtained for the quasi-isotropic NanoStitch composite were compared to those obtained for the quasi-isotropic control composite. The properties and …


Inhomogeneous Composite Design For High Energy Impact Resistance Through Computational Design, Physical Testing And Analysis, And Mathematical Modeling, Trenin Bayless Jul 2021

Inhomogeneous Composite Design For High Energy Impact Resistance Through Computational Design, Physical Testing And Analysis, And Mathematical Modeling, Trenin Bayless

Graduate Theses & Non-Theses

Research in the development of impact resistant materials has been an expanding field for the better part of a hundred years. The development of a light penetration resistant and man-portable system that can resist extreme quantities of kinetic energy has been a subject of substantial study. In particular, the use of composite materials, polymers, ceramics, and metals has been critical to the development of the field. With the advent of complex computational programs for defining material properties, it has become possible to use simulations as a starting point for the development of next generation armored systems. To that end, it …


Reinventing The Wheel, Esther K. Unti, Ahmed Z. Shorab, Patrick B. Kragen, Adam M. Menashe Dec 2018

Reinventing The Wheel, Esther K. Unti, Ahmed Z. Shorab, Patrick B. Kragen, Adam M. Menashe

Mechanical Engineering

Reinventing the Wheel selected tires and designed wheels for the 2018 Cal Poly, San Luis Obispo Formula SAE combustion vehicle. Available tire options were evaluated for steady-state and transient performance as well as vehicle integration. A single-piece composite wheel with hollow spokes was designed to meet stiffness, strength, and tolerance requirements. A detailed study of wheel loading and geometric structural efficiency was performed. Finite element analysis was used to iterate the geometry and laminate. A two-piece male mold was designed and machined to manufacture the wheel. Removable silicone inserts were used to create the hollow spokes.


Characterization Of 3d Printed Polylactic Acid/ Polycaprolactone/Titanium Dioxide Composites For Bone Replacement And Grafting, Sandra Elena Najera Beltran Jan 2018

Characterization Of 3d Printed Polylactic Acid/ Polycaprolactone/Titanium Dioxide Composites For Bone Replacement And Grafting, Sandra Elena Najera Beltran

Open Access Theses & Dissertations

A material that mimics the properties of bones was developed by optimizing the ratio of polymer composites of polylactic acid (PLA) and poly-ε-caprolactone (PCL), containing small amounts of titanium oxide (TiO2). Although titanium-based alloys have commonly been used for bone replacement procedures due to their biocompatibility with the human body and their mechanical properties, stress shielding continues to be a problem. The structure of a bone has a porosity which permits the flow of nutrients, blood, oxygen and minerals, and is an issue at the time of creating bone replacements using conventional methods. PLA and PCL have been used in …


Manufacturing A Composite Wheel Prototype Using 3d Printed Molds, Steven Thuening Jan 2018

Manufacturing A Composite Wheel Prototype Using 3d Printed Molds, Steven Thuening

All Graduate Theses, Dissertations, and Other Capstone Projects

Throughout the evolution of high performance racing, a large emphasis has been on reducing the weight of the vehicle in order to improve its performance. Over the years, new designs and materials have been introduced reducing weight in a variety of different locations. Comparing weight reduced in different areas has shown that some areas are more valuable to reduce than others are. Perhaps one of the most beneficial locations are the wheels. This is because the mass of the wheel is considered unsprung and rotational. Because of this, large improvements towards the reduction of wheel mass have been developed in …


The Inter-Laminar Shearing Effect On Wrinkle Development In Composite Forming Processes, David Sundquist Dec 2017

The Inter-Laminar Shearing Effect On Wrinkle Development In Composite Forming Processes, David Sundquist

McKelvey School of Engineering Theses & Dissertations

Composite materials are becoming prevalent in aerospace industries as the uniqueness of the composite structure allows the composite to be tailored specifically for individual applications. Many fabrication techniques produce defects in composite parts such as wrinkles, fiber waviness, fiber misalignment, and porosity. The driving mechanisms behind these defects occurring during forming processes are not fully understood and, thus, characterization formation of these defects in a uncured state is beneficial to optimize composite processing. This work primarily investigated the influence of how uncured pre-impregnated carbon ply properties affect the wrinkling behavior of a composite laminates. Several factors affecting composite ply forming …


Development Of 3d Compression Molded Composite Primary Structure, Sean D. Tischler, Jacob H. Goldstein, Alea A. Perez Jun 2017

Development Of 3d Compression Molded Composite Primary Structure, Sean D. Tischler, Jacob H. Goldstein, Alea A. Perez

Mechanical Engineering

The work accomplished by the Black Gold team improved upon the carbon fiber compression molding research and information available on the Cal Poly San Luis Obispo campus. The team used the rear suspension rocker arm off a Ventana Alpino mountain bike as a design goal for this project. This research and body of work includes the methods used to design a compression molded part for complex part loading and shape. This extends to the process of choosing an appropriate layup process, in addition to benefits and drawbacks of the use of chopped fibers in compression molding. The research includes the …


Bear Minimum: Ultralight Composite Bear Canister, Rama B. Adajian, Adam C. Eisenbarth Jun 2017

Bear Minimum: Ultralight Composite Bear Canister, Rama B. Adajian, Adam C. Eisenbarth

Mechanical Engineering

The ultralight backpacking community needs a strong, easy to use, safe bear canister that is lighter than current market products for trekking in the backcountry. A full design of the lid for the bear canister is to be completed. This includes the locking mechanism to ensure it is bear proof, the interface between the lid and the canister, and the structure of the lid so it passes the strength and weight specifications. The lid, along with the already designed canister body, is to be manufactured with formal documentation. The lid will initially be tested separately and then with the canister …


Fabrication And Thermoelectric Characterization Of Stretchable Conductive Latex-Based Composites, Cory Michael Arcovitch Jan 2017

Fabrication And Thermoelectric Characterization Of Stretchable Conductive Latex-Based Composites, Cory Michael Arcovitch

Graduate College Dissertations and Theses

Miniaturized stretchable electronic devices that can be bent and strained elastically without breaking, have drawn considerable research interest in recent years for wearable computers and integrated bio-sensor applications. Portable electrical power harvesting remains a critical challenge in flexible electronics materials. One proposed solution has been to convert waste heat from the human body into electricity using thermoelectric materials. Traditionally, however, these materials are brittle ceramic semiconductors with limited fracture resistance under deformation. The primary objective of this thesis is to address this challenge by fabricating and studying the mechanical, thermal and electrical performance of stretchable composites combining natural latex polymer …


Characterization Of Carbon-Fiber Reinforced Polyetherimide Thermoplastic Composites Using Mechanical And Ultrasonic Methods, Mohannad A. Alhaidri Aug 2014

Characterization Of Carbon-Fiber Reinforced Polyetherimide Thermoplastic Composites Using Mechanical And Ultrasonic Methods, Mohannad A. Alhaidri

Theses and Dissertations

Continuous fiber-reinforced thermoplastics (CFRT) have the potential for being a mass-produced material for high-performance applications. The primary challenge of using CFRT is achieving fiber wet-out due to the high viscosity of thermoplastics. This results in higher temperatures and pressures required for processing the composites. Co-mingling thermoplastic fibers with a reinforcing fiber, potentially, can enable better wetting by reducing the distance the matrix needs to flow. This could result in shorter cycle times and better consolidation at lower temperatures and pressures. In this study, a polyetherimide (PEI) fiber was comingled with carbon fibers (CF). The resultant fibers were woven into fabrics …


Analysis Of Multi-Directional Recycled Jute Fiber Composite Behavior Using Experimental, Numerical, And Analytical Methods, Patrick Severson Dec 2012

Analysis Of Multi-Directional Recycled Jute Fiber Composite Behavior Using Experimental, Numerical, And Analytical Methods, Patrick Severson

Theses and Dissertations

Composite materials are increasing in popularity as a material of choice in many engineering applications. Major industries using composites include automotive, construction, and sports equipment. Most of the knowledge, research, and technology that will help decrease the cost of composite materials have been aimed at developing synthetic fibers as the reinforcing constituent.

This thesis characterizes jute fibers obtained as a byproduct from the coffee industry to determine if they can be viable in composite manufacturing. Experimental analysis, finite element analysis, and analytical modeling are used to characterize jute fiber based composites. Experimental analysis consists of jute fiber bundle tensile testing …


A Resistance Based Structural Health Monitoring System For Composite Structure Applications, Dennis N. Boettcher Aug 2012

A Resistance Based Structural Health Monitoring System For Composite Structure Applications, Dennis N. Boettcher

Master's Theses

This research effort explored the possibility of using interwoven conductive and nonconductive fibers in a composite laminate for structural health monitoring (SHM). Traditional SHM systems utilize fiber optics, piezoelectrics, or detect defects by nondestructive test methods by use of sonar graphs or x-rays. However, these approaches are often expensive, time consuming and complicated.

The primary objective of this research was to apply a resistance based method of structural health monitoring to a composite structure to determine structural integrity and presence of defects.

The conductive properties of fiber such as carbon, copper, or constantan - a copper-nickel alloy - can be …


The Functionalization And Characterization Of Adherent Carbon Nanotubes With Silver Nanoparticles For Biological Applications, Adam A. Maleszewski Jan 2011

The Functionalization And Characterization Of Adherent Carbon Nanotubes With Silver Nanoparticles For Biological Applications, Adam A. Maleszewski

Browse all Theses and Dissertations

The purpose of this project is to form silver nanoparticles (Ag-NP) attached to a hierarchical substrate for possible use in biological applications. The effectiveness of these Ag-NP-containing devices, including biofilters and biosensors, may be dramatically enhanced by the use of hierarchical structures such as carbon nanotubes (CNT), as they offer a high surface area surface suitable for cell-device interactions, while Ag-NP would be a suitable component in many such devices due to its plasmonic surface properties (e.g. in sensor and directed energy applications) and its anti-microbial properties (desirable for fluid filtration due to its low weight. Meaningful control over the …


Natural Fibers And Fiberglass: A Technical And Economic Comparison, Justin Andrew Zsiros Jun 2010

Natural Fibers And Fiberglass: A Technical And Economic Comparison, Justin Andrew Zsiros

Theses and Dissertations

Natural fibers have received attention in recent years because of their minimal environmental impact, reasonably good properties, and low cost. There is a wide variety of natural fibers suitable for composite applications, the most common of which is flax. Flax has advantages in tensile strength, light weight, and low cost over other natural fibers. As with other natural and synthetic fibers, flax is used to reinforce both thermoset and thermoplastic matrices. When flax is used in thermoplastic matrices, polypropylene and polyethylene are the main resins used. Although at first glance flax may seem to be a cheaper alternative to fiberglass, …


Design, Fabrication, Structural Testing, And Numerical Analysis Of A Small Scale Composite Wing, Jacob David Gaunt, Juan Carlos Flores, Vincent Andrew Perry Jun 2010

Design, Fabrication, Structural Testing, And Numerical Analysis Of A Small Scale Composite Wing, Jacob David Gaunt, Juan Carlos Flores, Vincent Andrew Perry

Aerospace Engineering

A small scale composite wing based on a design found on an experimental aircraft was designed, constructed, and tested dynamically and statically. The wing was constructed similarly to an experimental aircraft wing. The performed static test was intended to produce pure bending. Strain gages were used to measure strains on the wing structure. The strains were converted to stresses to aid in analysis. The static test results suggested that the wing was actually under torsion. Four structural modes were found from the static test. A finite element analysis model was made to compare experimental results to numerical analytical results. The …


Utilization Of Municipal Solid Waste Rejects In The Production Of A Recycled Plastic Waste Composite Material, Mohamed Kamal Abou Khatwa Jun 2003

Utilization Of Municipal Solid Waste Rejects In The Production Of A Recycled Plastic Waste Composite Material, Mohamed Kamal Abou Khatwa

Archived Theses and Dissertations

The solid waste disposal problem has grown significantly in the last decades imposing a lot of pressure on disposal and treatment acts. In the past, incineration and landfilling were the common methods for disposing of products of municipal solid waste. With the increasing volumes of waste generation and the legislative restrictions of these treatment methods, reuse of bulk waste is foreseen as the best alternative to disposal. Due to the current widespread use of plastic products in daily life, post consumer plastics now contribute significantly to municipal solid waste generation rates with a contradicting low participation in waste minimization practices. …