Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Engineering

Engineering The Spectrum Of Near-Field Thermal Radiation, Saman Zare Dec 2022

Engineering The Spectrum Of Near-Field Thermal Radiation, Saman Zare

Electronic Theses and Dissertations

Thermal emission observed at sub-wavelength distances from the thermal source is referred to as near-field thermal radiation. Thermal radiation in the near-field regime can exceed Planck’s blackbody limit by orders of magnitude and be quasi-monochromatic. Due to these unique properties, near-field thermal radiation is very promising for several thermal management and energy harvesting applications. Many of these applications, such as nanogap thermophotovoltaics and thermal rectification, require near-field spectra that are not found among natural materials. Artificial metamaterials, which are engineered at the sub-wavelength scale, have been theoretically proposed for tuning the spectrum of near-field thermal radiation. However, engineering the near-field …


Algorithms For Exploration Of Advanced Electromagnetic Concepts, Asad Ullah Hil Gulib Aug 2022

Algorithms For Exploration Of Advanced Electromagnetic Concepts, Asad Ullah Hil Gulib

Open Access Theses & Dissertations

3D printing is revolutionizing the manufacturing industry and is now being considered in the electronics industry. The creation of the worldâ??s first 3D volumetric circuit has made a way to make circuits smaller, lighter, into unconventional form factors and exploit physics like anisotropy more effectively than planar geometries can. While this is exciting, many problems must be solved to make 3D volumetric circuits more efficient. One of these problems is electromagnetic interference and mutual coupling between the circuit components that are expected to increase in high-frequency 3D circuits. Spatially variant anisotropic metamaterials (SVAMs) could be a solution to overcome this …


Optical Signal Processing With Discrete-Space Metamaterials, Mohammad Moein Moeini Jan 2022

Optical Signal Processing With Discrete-Space Metamaterials, Mohammad Moein Moeini

Wayne State University Dissertations

As digital circuits are approaching the limits of Moore’s law, a great deal of efforthas been directed to alternative computing approaches. Among them, the old concept of optical signal processing (OSP) has attracted attention, revisited in the light of metamaterials and nano-photonics. This approach has been successful in realizing basic mathematical operations, such as derivatives and integrals, but it is difficult to be applied to more complex ones. Inspired by digital filters, we propose a radically new OSP approach, able to realize arbitrary mathematical operations over a nano-photonic platform. We demonstrate this concept for the case of spatial differentiation, image …


Cross-Junction Based Metasurfaces: A Roadmap To Fano Resonances, Mirna Soliman Jun 2021

Cross-Junction Based Metasurfaces: A Roadmap To Fano Resonances, Mirna Soliman

Theses and Dissertations

The first part of the thesis presents a summary of the classification of materials, followed by the development of metamaterials and their salient role. Then, a study of metamaterials and the evolution of these 3D structures to 2D, known as metasurfaces, have been discussed. Moreover, the physics and practical interest behind Fano resonance have been discussed. Furthermore, the physical fundamentals guiding the performance of both the metamaterials and metasurfaces, including the temporal coupled-mode theory and the generalized laws of reflection and refraction, have been intensely investigated, along with some of the outstanding properties of the metamaterials. Then, a comparison between …


Focused Beam System Biaxial Material Characterization, Nicholas A. O'Gorman Mar 2020

Focused Beam System Biaxial Material Characterization, Nicholas A. O'Gorman

Theses and Dissertations

Electromagnetic material characterization is the process of determining the constitutive parameters (complex permittivity and permeability) of given a sample. Due to the large number of unknowns involved, multiple unique measurements are required for material property extraction. Many measurement methods, such as waveguides and striplines, possess a rigid internal structure that the sample being measured must adhere to. This rigidity limits these methods to samples that fit within the device and inhibits oblique sample orientations, limiting the number of independent measurements that can be obtained. A focus beam system, due to being an open system with greater freedom in sample size …


Enhancing The Resolution Of Imaging Systems By Spatial Spectrum Manipulation, Wyatt Adams Jan 2019

Enhancing The Resolution Of Imaging Systems By Spatial Spectrum Manipulation, Wyatt Adams

Dissertations, Master's Theses and Master's Reports

Much research effort has been spent in the 21st century on superresolution imaging techniques, methods which can beat the diffraction limit. Subwavelength composite structures called ``metamaterials" had initially shown great promise in superresolution imaging applications in the early 2000s, owing to their potential for nearly arbitrary capabilities in controlling light. However, for optical frequencies they are often plagued by absorption and scattering losses which can decay or destroy their interesting properties. Similar issues limit the application of other superresolution devices operating as effective media, or metal films that can transfer waves with large momentum by supporting surface plasmon polaritons. In …


Experimental Testing Of A Metamaterial Slow Wave Structure For High-Power Microwave Generation, Kevin Aaron Shipman Apr 2018

Experimental Testing Of A Metamaterial Slow Wave Structure For High-Power Microwave Generation, Kevin Aaron Shipman

Electrical and Computer Engineering ETDs

Experimental Testing of a Metamaterial Slow Wave Structure for High-Power Microwave Generation

by

Kevin Aaron Shipman

B.S., Exercise Science, University of New Mexico, 2008

A.S., Mathematics, San Juan College, 2014

M.S., Electrical Engineering, University of New Mexico, 2018

Abstract

A high-power L-band microwave source has been developed using a metamaterial (MTM) to produce a biperiodic double negative slow wave structure (SWS) for interaction with an electron beam. The beam is generated by a ~700 kV, ~6 kA short pulse (~ 10 ns) electron beam accelerator. The design of the metamaterial SWS (MSWS) consists of a cylindrical waveguide, loaded with alternating …


Parallelization And Scalability Analysis Of The \\[1pc] 3d Spatially Variant Lattice Algorithm, Henry Roger Moncada Lopez Jan 2018

Parallelization And Scalability Analysis Of The \\[1pc] 3d Spatially Variant Lattice Algorithm, Henry Roger Moncada Lopez

Open Access Theses & Dissertations

The purpose of this research is to design a faster implementation of an algorithm to generate 3D spatially variant lattices (SVL) and improve its performance when it is running on a parallel computer system. The algorithm is used to synthesize a SVL for a periodic structure. The algorithm has the ability to spatially vary the unit cell, the orientation of the unit cells, lattice spacing, fill fraction, material composition, and lattice symmetry. The algorithm produces a lattice that is smooth, continuous and free of defects. The lattice spacing remains strikingly uniform even when the lattice is spatially varied. This is …


Nanophotonics For Dark Materials, Filters, And Optical Magnetism, Mengren Man Aug 2016

Nanophotonics For Dark Materials, Filters, And Optical Magnetism, Mengren Man

Open Access Dissertations

Research on nanophotonic structures for three application areas is described, a near perfect optical absorber based on a graphene/dielectric stack, an ultraviolet bandpass filter formed with an aluminum/dielectric stack, and structures exhibiting homogenizable magnetic properties at infrared frequencies. The graphene stack can be treated as a effective, homogenized medium that can be designed to reflect little light and absorb an astoundingly high amount per unit thickness, making it an ideal dark material and providing a new avenue for photonic devices based on two-dimensional materials. Another material stack arrangement with thin layers of metal and insulator forms a multi-cavity filter that …


Numerical Calculation Of Spatially Variant Anisotropic Metamaterial, Asad Ullah Hil Gulib Jan 2016

Numerical Calculation Of Spatially Variant Anisotropic Metamaterial, Asad Ullah Hil Gulib

Open Access Theses & Dissertations

3D printing, or additive manufacturing, is rapidly evolving into a mainstream manufacturing technology that is creating new opportunities for electromagnetics and circuits. 3D printing permits circuits to fully utilize the third dimension allowing more functions in the same amount of space and allows the devices to have arbitrary form factors. 3D printing is letting us discover new physics that is not possible in standard 2D circuits and devices. However, evolving electromagnetics and circuits into three dimensions introduces some serious problems like thermal management, interference, and mutual coupling between the components which degrades performance and hurts signal integrity.

Metamaterials are engineered …


Intensity Control Of Dielectric Barrier Discharge Filaments, Matthew Crawford Paliwoda Jan 2016

Intensity Control Of Dielectric Barrier Discharge Filaments, Matthew Crawford Paliwoda

Masters Theses

"When operated in a filamentary mode, a volume dielectric barrier discharge (DBD) is known to produce patterned plasma structures. These structures are currently being explored for reconfigurable metamaterial applications. In this work the presence and intensity of a single filament, within an array of filaments, was controlled by adjusting the voltage to that filament's individual needle electrode. The current, voltage, and time-averaged normalized light intensity were measured while varying the voltage of the needle through a self-biasing resistance. For a 7.5 kV, 3.2 kHz DBD in air, the needle-controlled filament intensity varies from that of the surrounding filaments to zero …


Modeling And Preliminary Characterization Of Passive, Wireless Temperature Sensors For Harsh Environment Applications Based On Periodic Structures, Diego Ivan Delfin Manriquez Jan 2015

Modeling And Preliminary Characterization Of Passive, Wireless Temperature Sensors For Harsh Environment Applications Based On Periodic Structures, Diego Ivan Delfin Manriquez

Open Access Theses & Dissertations

Wireless temperature sensing has attained significant attention in recent years due to the increasing need to develop reliable and affordable sensing solutions for energy conversion systems and other harsh environment applications. The development of next generation sensors for energy production processing parameters, such as temperature and pressure, can result in better performance of the system. Particularly, continuous temperature monitoring in energy conversion systems can result in enhancements such as better system integrity, less pollution and higher thermal efficiencies. However, the conditions experienced in these system components hinder the performance of current solutions due to the presence of semi-conductor materials and …


Quantum Levitation Using Metamaterials, Venkatesh K. Pappakrishnan Jul 2014

Quantum Levitation Using Metamaterials, Venkatesh K. Pappakrishnan

Doctoral Dissertations

The emergence of an attractive vacuum force (Casimir force) between two purely dielectric materials can lead to an increase in the friction and the stiction effects in nanoscale devices, resulting in degradation or decreased performance. Thus, it is of high practical importance that the conditions for the reversal of the Casimir force from attractive to repulsive are identified. Although the repulsive Casimir force has been considered for high dielectric materials as an intermediate (between the plates) medium, so far no realistic system has been proposed that can demonstrate quantum levitation with air/vacuum as a host medium. Since air is the …


Large Area Conformal Infrared Frequency Selective Surfaces, Jeffrey D'Archangel Jan 2014

Large Area Conformal Infrared Frequency Selective Surfaces, Jeffrey D'Archangel

Electronic Theses and Dissertations

Frequency selective surfaces (FSS) were originally developed for electromagnetic filtering applications at microwave frequencies. Electron-beam lithography has enabled the extension of FSS to infrared frequencies; however, these techniques create sample sizes that are seldom appropriate for real world applications due to the size and rigidity of the substrate. A new method of fabricating large area conformal infrared FSS is introduced, which involves releasing miniature FSS arrays from a substrate for implementation in a coating. A selective etching process is proposed and executed to create FSS particles from crossed-dipole and square-loop FSS arrays. When the fill-factor of the particles in the …


3d Printed Spatially Variant Metamaterials, Cesar Roman Garcia Jan 2014

3d Printed Spatially Variant Metamaterials, Cesar Roman Garcia

Open Access Theses & Dissertations

The recent advancement in 3D printing has created a new way to design electronics and electromagnetic devices. This allows for a new breed of non-planar designs to be used, fully exploiting all three dimensions like never before. More functions can be fit into the same amount of space, products with novel form factors can be more easily manufactured, interconnects can be routed more smoothly, interfaces can be better implemented, electrical and mechanical functions can be comingled, and entirely new device paradigms will be invented. When departing from traditional planar topologies many new problems arise like signal integrity, crosstalk, noise, and …


Digitally Manufactured Spatially Variant Photonic Crystals, Javier Jair Pazos Jan 2014

Digitally Manufactured Spatially Variant Photonic Crystals, Javier Jair Pazos

Open Access Theses & Dissertations

Metamaterials and photonic crystals are engineered composites that exhibit electromagnetic properties superior to those found in nature. They have been shown to produce novel and useful phenomena that allow extraordinary control over the electromagnetic field. One of these phenomena is self-collimation, an effect observed in photonic crystals in which a beam of light propagates without diffraction and is forced to flow in the direction of the crystal. Self-collimation however, like many of the mechanisms enabled through dispersion engineering, is effective in directions only along the principal axes of the lattice. To this effect, a general purpose synThesis procedure was developed …


Design, Modeling, And Measurement Of A Metamaterial Electromagnetic Field Concentrator, Noel A. Humber Mar 2012

Design, Modeling, And Measurement Of A Metamaterial Electromagnetic Field Concentrator, Noel A. Humber

Theses and Dissertations

This document addresses the need to improve the design process for creating an optimized metamaterial. In particular, two challenges are addressed: creating an electromagnetic concentrator and optimizing the design of metamaterial used to create the electromagnetic concentrator. The first challenge is addressed by developing an electromagnetic field concentrator from a design of concentric geometric shapes. The material forming the concentrator is derived from the application of transformation optics. The resulting anisotropic, spatially variant constitutive parameter tensors are then approximated with metamatieral inclusions using the combination of an AFIT rapid metamaterial design process and a design process created for rapid metamaterial …


Homogenization Of Structured Metasurfaces And Uniaxial Wire Medium Metamaterials For Microwave Applications, Chandra Sekhar Reddy Kaipa Jan 2012

Homogenization Of Structured Metasurfaces And Uniaxial Wire Medium Metamaterials For Microwave Applications, Chandra Sekhar Reddy Kaipa

Electronic Theses and Dissertations

In recent years, the study of electromagnetic wave interaction with artificial media has been the subject of intense research interest due to their extraordinary properties such as negative refraction, partial focusing, enhanced transmission, and spatial filtering, among others. Artificial media are crystals of various periodic metallic inclusions with dimensions of the order of ?/10 - ?/4. When compared to natural materials, the inclusions are, thus, not as small in terms of the wavelength, even in the optical band. Therefore, one should expect the electrodynamics of these media to be inherently non-local, characterized by strong spatial dispersion effects. The dissertation includes …