Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 38

Full-Text Articles in Engineering

Design Of Class F-Based Doherty Power Amplifier For S-Band Applications, Kyle Chang Jun 2023

Design Of Class F-Based Doherty Power Amplifier For S-Band Applications, Kyle Chang

Master's Theses

Modern RF and millimeter-wave communication links call for high-efficiency front end systems with high output power and high linearity to meet minimum transmission requirements. Advanced modulation techniques, such as orthogonal frequency-division multiplexing (OFDM) require a large power amplifier (PA) dynamic range due to the high peak-to-average power ratio (PAPR). This thesis provides the analysis, design, and experimental verification of a high-efficiency, high-linearity S-band Doherty power amplifier (DPA) based on the Class F PA. Traditional Class F PAs use harmonically tuned output matching networks to obtain up to 88.4% power-added efficiency (PAE) theoretically, however the amplifier experiences poor linearity performance due …


Design And Analysis Of A Discrete, Pcb-Level Low-Power, Microwave Cross-Coupled Differential Lc Voltage-Controlled Oscillator, Pavin Singh Virdee Sep 2022

Design And Analysis Of A Discrete, Pcb-Level Low-Power, Microwave Cross-Coupled Differential Lc Voltage-Controlled Oscillator, Pavin Singh Virdee

Master's Theses

Radio Frequency (RF) and Microwave devices are typically implemented in Integrated Circuit (IC) form to minimize parasitics, increase precision and tolerances, and minimize size. Although IC fabrication for students and independent engineers is cost-prohibitive, an abundance of low-cost, easily accessible printed circuit board (PCB) and electronic component manufacturers allows affordable PCB fabrication.

While nearly all microwave voltage-controlled oscillator (VCO) designs are IC-based, this study presents a discrete PCB-level cross-coupled, differential LC VCO to demonstrate this more affordable and accessible approach. This thesis presents a 65 mW, discrete component VCO PCB with industry-comparable RF performance. A phase noise of -103.7 dBc/Hz …


X-Band Rf Transmitter Design For Multi-Purpose Small Satellite Communication Operations, Omer F. Gumus Jun 2022

X-Band Rf Transmitter Design For Multi-Purpose Small Satellite Communication Operations, Omer F. Gumus

Master's Theses

This thesis provides a description of the analysis, design, and tests of an X-band RF Transmitter communication system for small satellites. X-band transmitter systems are becoming popular in the upcoming deep space missions. Most of the deep-space ground stations have been using X-band frequencies to receive or transmit signals. The X-band (<10 GHz) can offer lower atmospheric losses and up to a couple of Mbps data rates for multiple satellite operations. Nowadays, many small satellites have been using frequency bands such as VHF, UHF, L, and S-band frequencies for communication. From deep space to the ground station, the low-frequency ranges are inadequate in providing Mbps level data rates and enough bandwidth for deep space missions.

The main focus of this thesis was the development of the subsystems such as gain block amplifier, Mixer, Bandpass Filter, and RF power amplifier. The subsystems were designed separately, then they were connected together to perform an end-to-end system test. One of the thesis aims is to design …


Simulation Of An Sp8t 18 Ghz Rf Switch Using Smt Pin Diodes, Andre De Souza Vigano Dec 2020

Simulation Of An Sp8t 18 Ghz Rf Switch Using Smt Pin Diodes, Andre De Souza Vigano

Master's Theses

Radio frequency (RF) and microwave switches are widely used in several different applications including radar, measurement systems, telecommunications, and other areas. An RF switch can control a radar’s transmit vs. receive mode, select the operating band, or direct an RF signal to different paths. In this study, a single pole eight throw (SP8T) switch using only Surface Mount (SMT) components is designed and simulated in Keysight’s Advanced Design System (ADS). Single pole eight throw is defined as one input and eight possible outputs. A star network configuration with series-shunt PIN diode switches is used to create the 8-way RF switch. …


Performance Enhancement And Characterization Of An Electromagnetic Railgun, Paul M. Gilles Dec 2019

Performance Enhancement And Characterization Of An Electromagnetic Railgun, Paul M. Gilles

Master's Theses

Collision with orbital debris poses a serious threat to spacecraft and astronauts. Hypervelocity impacts resulting from collisions mean that objects with a mass less than 1g can cause mission-ending damage to spacecraft. A means of shielding spacecraft against collisions is necessary. A means of testing candidate shielding methods for their efficacy in mitigating hypervelocity impacts is therefore also necessary. Cal Poly’s Electromagnetic Railgun was designed with the goal of creating a laboratory system capable of simulating hypervelocity (≥ 3 km/s) impacts. Due to several factors, the system was not previously capable of high-velocity (≥ 1 km/s) tests. A deficient projectile …


Designing A Simulator For An Electrically-Pumped Organic Laser Diode, Robert Hulbert Jun 2019

Designing A Simulator For An Electrically-Pumped Organic Laser Diode, Robert Hulbert

Master's Theses

Organic semiconductors provide an alternative set of basis materials to fabricate electronic devices like PN Junctions, LEDs, and FETs. These materials have several benefits over traditional inorganic semiconductors including their mechanical flexibility, reliance on renewable resources, and inexpensive large-scale manufacturability. Despite the contemporary device implementations with organic semiconductors, a solid-state electrically-pumped organic laser diode does not exist. However, organically-based lasers do exist by utilizing the organic material strictly for optical gain. The challenge occurs when charge carriers appear in the organic material. The charge carriers must reach a concentration such that population inversion occurs producing optical gain. However, between the …


Experimental Optical Pulse Picker For Lawrence Livermore National Lab, Alexander Thomas Wargo Mar 2019

Experimental Optical Pulse Picker For Lawrence Livermore National Lab, Alexander Thomas Wargo

Master's Theses

Proprietary.


The Design, Building, And Testing Of A Constant On Discreet Jammer For The Ieee 802.15.4/Zigbee Wireless Communication Protocol, Alexandre J. Marette Jun 2018

The Design, Building, And Testing Of A Constant On Discreet Jammer For The Ieee 802.15.4/Zigbee Wireless Communication Protocol, Alexandre J. Marette

Master's Theses

As wireless protocols become easier to implement, more products come with wireless connectivity. This latest push for wireless connectivity has left a gap in the development of the security and the reliability of some protocols. These wireless protocols can be used in the growing field of IoT where wireless sensors are used to share information throughout a network. IoT is being implemented in homes, agriculture, manufactory, and in the medical field. Disrupting a wireless device from proper communication could potentially result in production loss, security issues, and bodily harm. The 802.15.4/ZigBee protocol is used in low power, low data rate, …


Adaptation Of Vt-Dbr Lasers For Lidar, Luke Horowitz Jun 2018

Adaptation Of Vt-Dbr Lasers For Lidar, Luke Horowitz

Master's Theses

Vernier Tuned Distributed Bragg Reflector (VT-DBR) lasers have had great success in the field of Swept-Source Optical Coherence Tomography (SS-OCT) due to their continuous and nearly 40 nm wavelength tuning range in a single longitudinal mode. Fast sweeps allow for real time imaging with micrometer resolution at a distance of a few centimeters. While this laser has proven quite useful as a medical imaging tool via OCT, it has yet to similarly prove itself for general light detection and ranging (LIDAR) applications due to range limitations that arise from a finite laser coherence length. The goal of this thesis is …


Microwave Interferometry Diagnostic Applications For Measurements Of Explosives, Loren A. Kline Jul 2017

Microwave Interferometry Diagnostic Applications For Measurements Of Explosives, Loren A. Kline

Master's Theses

Microwave interferometry (MI) is a Doppler based diagnostic tool used to measure the detonation velocity of explosives, which has applications to explosive safety. The geometry used in existing MI experiments is cylindrical explosives pellets layered in a cylindrical case. It is of interest to Lawrence Livermore National Labs to measure additional geometries that may be overmoded, meaning that the geometries propagate higher-order transverse electromagnetic waves. The goal of my project is to measure and analyze the input reflection from a novel structure and to find a good frequency to use in an experiment using this structure. Two methods of determining …


Hall Effect Modeling In Fem Simulators And Comparison To Experimental Results In Silicon And Printed Sensors, Leonardo A. Frem Jun 2016

Hall Effect Modeling In Fem Simulators And Comparison To Experimental Results In Silicon And Printed Sensors, Leonardo A. Frem

Master's Theses

Finite element method simulation models for thin-film semiconductor-based Hall sensors were developed using secondary data in order to understand their behavior under strong magnetic fields. Given a device geometry and charge carrier density and mobility, the models accurately calculated sensor resistance, Hall voltage under a normally-incident constant magnetic field, and expected offset from a population of Hall devices. The model was successfully matched against data from integrated chip Hall sensors from St. Jude Medical. Additionally, the feasibility of creating Hall effect devices with common carbon ink was explored experimentally. The material properties obtained from testing these ink-based devices through the …


Wavelength Accuracy Study For High-Density Fiber Bragg Grating Sensor Systems Using A Rapidly-Swept Akinetic-Laser Source, Jacob Egorov Jun 2016

Wavelength Accuracy Study For High-Density Fiber Bragg Grating Sensor Systems Using A Rapidly-Swept Akinetic-Laser Source, Jacob Egorov

Master's Theses

This thesis studies the center wavelength accuracy of a Fiber Bragg Grating Sensor system that has a large number of sensor elements both as a function of wavelength and as a function of position. Determining the center wavelength of each of the fiber optic sensors is a critical parameter that ultimately determines sensor accuracy. The high density environment can result in degradation of accuracy of the center wavelength measurement. This thesis aims to quantify this measurement error both with theoretical and experimental studies.

There are many sensing applications where optical fiber sensors are preferred over electrical sensors, such as the …


Analysis Of Electromagnetic Launcher Design And Modeling, Garrett Ross Germany Jun 2016

Analysis Of Electromagnetic Launcher Design And Modeling, Garrett Ross Germany

Master's Theses

This thesis derives working expressions from electromagnetic physical laws to gain a deeper understanding of the nature of railguns. The expressions are refined for ease of use and then compared to electromagnetic simulators that solve complex equations that arise from different rail geometry. Further simplifications lead to an expression for the final velocity of the projectile and showcase the importance of the system resistance to projectile flux gain ratio. A Simulink simulation then incorporates the resulting non-linear differential equations and approximates the projectile velocity over time based on physical dimensions and material properties. Some equations derived can be found in …


Scaled Synthetic Aperture Radar System Development, Ryan K. Green Dec 2015

Scaled Synthetic Aperture Radar System Development, Ryan K. Green

Master's Theses

Synthetic Aperture Radar (SAR) systems generate two dimensional images of a target area using RF energy as opposed to light waves used by cameras. When cloud cover or other optical obstructions prevent camera imaging over a target area, SAR can be substituted to generate high resolution images. Linear frequency modulated signals are transmitted and received while a moving imaging platform traverses a target area to develop high resolution images through modern digital signal processing (DSP) techniques. The motivation for this joint thesis project is to design and construct a scaled SAR system to support Cal Poly radar projects. Objectives include …


Characterization Of Two Vernier-Tuned Distributed Bragg Reflector (Vt-Dbr) Lasers Used In Swept Source Optical Coherence Tomography (Ss-Oct), Greg M. Bergdoll Jun 2015

Characterization Of Two Vernier-Tuned Distributed Bragg Reflector (Vt-Dbr) Lasers Used In Swept Source Optical Coherence Tomography (Ss-Oct), Greg M. Bergdoll

Master's Theses

Insight Photonic Solutions Inc. has continued to develop their patented VT-DBR laser design; these wavelength tunable lasers promise marked image-quality and acquisition time improvements in SS-OCT applications.

To be well suited for SS-OCT, tunable lasers must be capable of producing a highly linear wavelength sweep across a tuning range well-matched to the medium being imaged; many different tunable lasers used in SS-OCT are compared to identify the optimal solution.

This work electrically and spectrally characterizes two completely new all-semiconductor VT-DBR designs to compare, as well. The Neptune VT-DBR, an O-band laser, operates around the 1310 nm range and is a …


Sweep Stability Characterization Of A Vernier-Tuned Distributed Bragg Reflector (Vt-Dbr) All-Semiconductor Tunable Swept Laser System At 1550 Nm For Sensing Applications, Roric Christian Martens Biersach Jun 2015

Sweep Stability Characterization Of A Vernier-Tuned Distributed Bragg Reflector (Vt-Dbr) All-Semiconductor Tunable Swept Laser System At 1550 Nm For Sensing Applications, Roric Christian Martens Biersach

Master's Theses

The short-term jitter and longer-term wander of the frequency sweep profile of a Vernier-Tuned Distributed Bragg Reflector (VT-DBR) laser at 1550 nm used in optical coherence tomography (OCT) and other sensing applications is characterized in this work. The VT-DBR has demonstrated success in source-swept OCT (SSOCT), performing both intensity and phase-sensitive OCT.

The purpose of this paper is to investigate one of the unique aspects of the VT-DBR laser that makes it successful in OCT: the stability of the linear optical frequency sweep. A highly stable linear optical frequency sweep implies benefits for further fiber sensing applications including fiber Bragg …


Hybrid Silicon Mode-Locked Laser With Improved Rf Power By Impedance Matching, Bassem M. Tossoun Sep 2014

Hybrid Silicon Mode-Locked Laser With Improved Rf Power By Impedance Matching, Bassem M. Tossoun

Master's Theses

The mode-locked laser diode (MLLD) finds a lot of use in applications such as ultra high-speed data processing and sampling, large-capacity optical fiber communications based on optical time-division multiplexing (OTDM) systems. Integrating mode-locked lasers on silicon makes way for highly integrated silicon based photonic communication devices. The mode-locked laser being used in this thesis was built with Hybrid Silicon technology. This technology, developed by UC Santa Barbara in 2006, introduced the idea of wafer bonding a crystalline III- V layer to a Silicon-on-insulator (SOI) substrate, making integrated lasers in silicon chips possible.

Furthermore, all mode-locked lasers produce phase noise, which …


Enhancing Gan Led Efficiency Through Nano-Gratings And Standing Wave Analysis, Gabriel M. Halpin Dec 2013

Enhancing Gan Led Efficiency Through Nano-Gratings And Standing Wave Analysis, Gabriel M. Halpin

Master's Theses

Improving energy efficient lighting is a necessary step in reducing energy consumption.Lighting currently consumes 17% of all U.S. residential and commercial electricity, but a report from the U.S. Office of Energy Efficiency and Renewable Energy projects that switching to LED lighting over the next 20 years will save 46% of electricity used in lighting.GaN LEDs are used for their efficient conversion of electricity to light, but improving GaN efficiency requires optically engineering the chip to extract more light.Total internal reflection limits GaN LED performance since light must approach the chip surface within 23.6° of normal to escape into air.This thesis …


A Compact, Reconfigurable Uhf Communication System Design For Use With Polysat's Embedded Linux Platform, Austin Williams Sep 2013

A Compact, Reconfigurable Uhf Communication System Design For Use With Polysat's Embedded Linux Platform, Austin Williams

Master's Theses

The beginning of this thesis provides an overview of the heritage UHF Communication System design flown on CP2, CP3, CP4, CP5, and CP6, summarizing previous analysis of its performance, and providing the justification for a complete system re-design. High level requirements for the new UHF System are defined, and a trade study is performed on state-of-the-art single chip transceivers, low noise amplifiers, and transmit power amplifiers. These components are then designed into a functional communication system, with key components analyzed for proper impedance matching and performance characterization compared to expected datasheet values. Next, the system as a whole is characterized …


Metamaterial Enhanced Wireless Power Transmission System, Travis Jade Heffernan Jul 2013

Metamaterial Enhanced Wireless Power Transmission System, Travis Jade Heffernan

Master's Theses

Nikolai Tesla's revolutionary experiments demonstrated the possible benefits of transmitting power wirelessly as early as 1891. Applications for the military, consumers, emergency personnel, remote sensors, and others use Tesla’s discovery of wireless power. Wireless power transmission (WPT) has the potential to be a common source of consumable energy, but it will only receive serious consideration if the transmit and receive systems are extremely efficient and capable of delivering usable amounts of power. Research has been conducted to improve the efficiency and performance of nearly every aspect of WPT systems, but the relatively new field of metamaterials (MTMs) has yet to …


A Novel Unit Cell Antenna For Highly Integrated Phased Arrays In The Shf Band, Timothy Bryan Ogilvie Jun 2013

A Novel Unit Cell Antenna For Highly Integrated Phased Arrays In The Shf Band, Timothy Bryan Ogilvie

Master's Theses

Phased arrays are electromagnetic antenna systems comprised of many radiating elements and processing electronics. Radiating elements are typically positioned in an orderly grid within the antenna aperture. In the receive mode of operation, radiating elements capture some of the signal energy from incoming radiation and guide these signals to processing electronics. Signals are filtered and amplified to maintain the desired sensitivity and complexly weighted using circuits with reconfigurable amplification gain and phase delay. Finally, all signals are combined. The summation of these complexly weighted spatial samples forms a spatial filter in the same way complexly weighted temporal samples establish a …


Early Wildfire Detection Using Temporal Filtering And Multi-Band Infrared Analysis, Ansel John Boynton Jun 2013

Early Wildfire Detection Using Temporal Filtering And Multi-Band Infrared Analysis, Ansel John Boynton

Master's Theses

Every year wildfires threaten or destroy ecological habitats, man-made infrastructure and people’s lives. Additionally millions of dollars are spent each year trying to prevent and control these fires. Ideally if a wildfire can be detected before it rages out of control it can be extinguished and avoid large scale devastation. Traditional manned fire lookout towers are neither cost effective nor particularly efficient at detecting wildfire. It is proposed that temporal filtering can be used to isolate the signals created at the beginnings of potential wildfires. Temporal filtering can remove any background image and any periodic signals created by the camera …


Characterization And Modeling Of An O-Band 1310 Nm Sampled-Grating Distributed Bragg Reflector (Sg-Dbr) Laser For Optical Coherence Tomography (Oct) Applications, Desmond Charles Talkington Jun 2013

Characterization And Modeling Of An O-Band 1310 Nm Sampled-Grating Distributed Bragg Reflector (Sg-Dbr) Laser For Optical Coherence Tomography (Oct) Applications, Desmond Charles Talkington

Master's Theses

In this project, the performance aspects of a new early generation 1310 nm Sampled-Grating Distributed Bragg Reflector (SG-DBR) semiconductor laser are investigated. SG-DBR lasers are ideal for Source Swept Optical Coherence Tomography (SS-OCT), a Fourier-Domain based approach for OCT, necessitating a tunable wavelength source. Three internal sections control the frequency output for tuning, along with two amplifiers for amplitude control. These O-band SG-DBR devices are now being produced in research quantities. SG-DBR lasers have been produced at 1550 and 1600 nm for some times. Fundamental questions regarding the performance of the 1310 nm devices must be quantified. Standard metrics including …


Design, Fabrication, And Testing Of An Emr Based Orbital Debris Impact Testing Platform, Jeffrey J. Maniglia Jr. Jun 2013

Design, Fabrication, And Testing Of An Emr Based Orbital Debris Impact Testing Platform, Jeffrey J. Maniglia Jr.

Master's Theses

This paper describes the changes made from Cal Poly’s initial railgun system, the Mk. 1 railgun, to the Mk. 1.1 system, as well as the design, fabrication, and testing of a newer and larger Mk. 2 railgun system. The Mk. 1.1 system is developed as a more efficient alteration of the original Mk. 1 system, but is found to be defective due to hardware deficiencies and failure, as well as unforeseen efficiency losses. A Mk. 2 system is developed and built around donated hardware from the Naval Postgraduate School. The Mk. 2 system strove to implement an efficient, augmented, electromagnetic …


A Tunable Electromagnetic Band-Gap Microstrip Filter, Greg A. Lancaster Jan 2013

A Tunable Electromagnetic Band-Gap Microstrip Filter, Greg A. Lancaster

Master's Theses

In high frequency design, harmonic suppression is a persistent struggle. Non-linear devices such as switches and amplifiers produce unwanted harmonics which may interfere with other frequency bands. Filtering is a widely accepted solution, however there are various shortcomings involved. Suppressing multiple harmonics, if desired, with traditional lumped element and distributed component band-stop filters requires using multiple filters. These topologies are not easily made tunable either. A new filter topology is investigated called Electromagnetic Band-Gap (EBG) structures.

EBG structures have recently gained the interest of microwave designers due to their periodic nature which prohibits the propagation of certain frequency bands. EBG …


The Effect Of Polarization And Ingan Quantum Well Shape In Multiple Quantum Well Light Emitting Diode Heterostructures, Patrick M. Mcbride Jun 2012

The Effect Of Polarization And Ingan Quantum Well Shape In Multiple Quantum Well Light Emitting Diode Heterostructures, Patrick M. Mcbride

Master's Theses

Previous research in InGaN/GaN light emitting diodes (LEDs) employing semi-classical drift-diffusion models has used reduced polarization constants without much physical explanantion. This paper investigates possible physical explanations for this effective polarization reduction in InGaN LEDs through the use of the simulation software SiLENSe. One major problem of current LED simulations is the assumption of perfectly discrete transitions between the quantum well (QW) and blocking layers when experiments have shown this to not be the case. The In concentration profile within InGaN multiple quantum well (MQW) devices shows much smoother and delayed transitions indicative of indium diffusion and drift during …


Light Extraction Enhancement Of Gan Based Leds Using Top Gratings, Patterned Sapphire Substrates, And Reflective Surfaces, Greg Chavoor Jun 2012

Light Extraction Enhancement Of Gan Based Leds Using Top Gratings, Patterned Sapphire Substrates, And Reflective Surfaces, Greg Chavoor

Master's Theses

In the last 15 years, an immense amount of research has gone into developing high efficiency Gallium Nitride based light emitting diodes (LED). These devices have become increasingly popular in LED displays and solid state lighting. Due to the large difference in refractive index between GaN and Air, a significant amount of light reflects at the boundary and does not escape the device. This drawback decreases external quantum efficiency (EQE) by minimizing light extraction. Scientists and engineers continue to develop creative solutions to enhance light extraction. Some solutions include surface roughening, patterned sapphire substrates, and reflective layers.

This study proposes …


3d Electromagnetic Simulation Tool Exposure For Undergraduate Electrical Engineers: Incorporation Into An Analog Filters Course, Bobby B. Pheng Jun 2012

3d Electromagnetic Simulation Tool Exposure For Undergraduate Electrical Engineers: Incorporation Into An Analog Filters Course, Bobby B. Pheng

Master's Theses

With the growth of wireless communications, comes the need for engineers knowledgeable in 3D electromagnetic (EM) simulation of high-frequency circuits. To give electrical engineering students a better understanding of the behavior of electromagnetic fields, experiments including the use of 3D EM simulation software were proposed. Most students get lost in differential equations, curls, and divergences; this thesis aims to remedy that by exposing them to 3D EM simulation, which may motivate them toward further study in electromagnetics. Also, experience using EMPro is very beneficial for future RF/microwave/antenna engineers, as use of 3D EM simulation is becoming a requirement for this …


Polar Field Oriented Control With 3rd Harmonic Injection, Martin Todd Hess Feb 2012

Polar Field Oriented Control With 3rd Harmonic Injection, Martin Todd Hess

Master's Theses

Abstract

POLAR FIELD-ORIENTED CONTROL

with

3RD HARMONIC INJECTION

Martin Todd Hess

Field Oriented Control (FOC), also known as vector control, is a widely used and well documented method for controlling Permanent-Magnet Synchronous Motors (PMSM) and induction motors. Almost invariably the orientation of the stator and rotor (field) fluxes are described in rectangular coordinates. In this thesis we explore the practicality of using polar coordinates.

Third harmonic injection is also a well-known technique that allows full utilization of the bus (DC-link), thus allowing the motor to run to full base speed without the use of field weakening. This technique potentially …


902–928mhz Uhf Rfid Tag Antenna Design, Fabrication And Test, Chiweng Kam Aug 2011

902–928mhz Uhf Rfid Tag Antenna Design, Fabrication And Test, Chiweng Kam

Master's Theses

Radio Frequency Identification (RFID) uses RF radiation to identify physical objects. With decreasing integrated circuit (IC) cost and size, RFID applications are becoming economically feasible and gaining popularity. Researchers at MIT suggest that RFID tags operating in the 900 MHz band (ultrahigh frequency, UHF) represent the best compromise of cost, read range, and capabilities [1]. Passive RFID tags, which exclude radio transmitters and internal power sources, are popular due to their small size and low cost [1].

This project produced Cal Poly’s first ever on-campus printed, assembled, and operational UHF (902 to 928 MHz) passive RFID tag. Project goals include …