Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 36

Full-Text Articles in Engineering

Limiting And Transient Performances Of A Low Loss Pin-Schottky Limiter, Chin-Leong Lim Nov 2013

Limiting And Transient Performances Of A Low Loss Pin-Schottky Limiter, Chin-Leong Lim

Chin-Leong Lim

The main cause of loss in the PIN-Schottky limiter is the diodes’ parasitic capacitances. Techniques to counter the parasitic capacitances include using bare chip, air cavity packaging, diode stacking, mesa construction, isolating the Schottky diode from the signal path and connecting the diodes to a low impedance node. But the aforementioned techniques either sacrifice cost, manufacturability, size, performances or thermal ruggedness. To reduce loss in the PIN-Schottky limiter, we re-configured its parasitics into a low pass ladder network. This paper reports on the new configuration’s changed large signal and transient performances. We observed improved isolation at 0.9 and 2.4 GHz, …


Design Concepts Of Terahertz Quantum Cascade Lasers: Proposal For Terahertz Laser Efficiency Improvements, Tillmann Kubis, Saumitra Raj Mehrotra, Gerhard Klimeck Nov 2013

Design Concepts Of Terahertz Quantum Cascade Lasers: Proposal For Terahertz Laser Efficiency Improvements, Tillmann Kubis, Saumitra Raj Mehrotra, Gerhard Klimeck

Gerhard Klimeck

Conceptual disadvantages of typical resonant phonon terahertz quantum cascade lasers 􏰎THz-QCLs􏰍 are analyzed. Alternative designs and their combination within a concrete device proposal are discussed to improve the QCL performance. The improvements are 􏰎1􏰍 indirect pumping of the upper laser level, 􏰎2􏰍 diagonal optical transitions, 􏰎3􏰍 complete electron thermalization, and 􏰎4􏰍 materials with low effective electron masses. The nonequilibrium Green’s function method is applied to predict stationary electron transport and optical gain. The proposed THz-QCL shows a higher optical gain, a lower threshold current, and a higher operation temperature. Alloy disorder scattering can worsen the QCL performance.


Over Look To Genetic Algorithm, Ata Jahangir Moshayedi Aug 2013

Over Look To Genetic Algorithm, Ata Jahangir Moshayedi

Ata Jahangir Moshayedi

Over look to Genetic algorithm


Brief Comparison Between 8051 And Avr, Ata Jahangir Moshayedi Aug 2013

Brief Comparison Between 8051 And Avr, Ata Jahangir Moshayedi

Ata Jahangir Moshayedi

Brief comparison between 8051 and AVR


A Multiband Pifa With Slotted Ground Plane For Personal Communication Handheld Devices, Naveen Kumar, Garima Saini Jun 2013

A Multiband Pifa With Slotted Ground Plane For Personal Communication Handheld Devices, Naveen Kumar, Garima Saini

Naveen Kumar

In mobile phones and several other wireless communication devices, antenna is an important element which decides the quality & performance of the device over various communication standards. In this paper, a compact internal Planar Inverted-F Antenna (PIFA) with a ground plane having two open ended slots is proposed which is very thin compared to conventional PIFA structure. By using the ground plane as a radiator element along with top plate of PIFA structure, the height of PIFA can be reduced to a great extent, which further results in reducing thickness of mobile phones. In this paper the proposed antenna has …


National Infrastructure Protection Priorities For Nuclear Electromagnetic Pulse (Emp) And Solar Storm Geomagnetic Disturbance Catastrophes, George H. Baker Iii Jun 2013

National Infrastructure Protection Priorities For Nuclear Electromagnetic Pulse (Emp) And Solar Storm Geomagnetic Disturbance Catastrophes, George H. Baker Iii

George H Baker

The Commission to Assess the Threat to the United States from Electromagnetic Pulse Attack has provided a compelling case for protecting civilian infrastructure against the effects of EMP and geomagnetic disturbances (GMD) caused by severe solar storms. Similar to protecting critical infrastructure against any hazard, it will be important to take a risk-based priority approach for these two electromagnetic threats, recognizing that it will be fiscally impracticable to protect everything. In this regard, EMP and GMD are particularly challenging in that they interfere with electrical and electronic data, control, transmission, and communication systems organic to nearly all critical infrastructures, simultaneously, …


Direct Power Control Of Dfigs Based Wind Energy Generation Systems Under Distorted Grid Voltage Conditions, Emad Gameil Shehata E. G. Shehata Jun 2013

Direct Power Control Of Dfigs Based Wind Energy Generation Systems Under Distorted Grid Voltage Conditions, Emad Gameil Shehata E. G. Shehata

Emad Gameil Shehata E. G. Shehata

This paper presents an improved direct power control (DPC) strategy of a wind turbine driven doubly fed induction generators (DFIGs) connected to distorted grid voltage conditions. A coordinate control strategy of the grid side converter (GSC) and rotor side converter (RSC) of the DFIG is designed to improve the overall scheme performance. The RSC is controlled based on a DPC principle to eliminate the electromagnetic torque and stator reactive power oscillations. The total active and reactive power oscillations are compensated by the GSC control to achieve constant active and reactive powers from the overall DFIG system. A current control scheme …


Voltge & Reactive Power Control In Oman Transmission System, Omar H. Abdalla, Rashid Al-Badwawi, Hilal Al-Hadi, Hisham Al-Riyami, Ahmed Al-Nadabi, Karim Karoui, Ariadne Szekut Jun 2013

Voltge & Reactive Power Control In Oman Transmission System, Omar H. Abdalla, Rashid Al-Badwawi, Hilal Al-Hadi, Hisham Al-Riyami, Ahmed Al-Nadabi, Karim Karoui, Ariadne Szekut

Omar H. Abdalla

The paper presents voltage and reactive power control in the Main Interconnected Transmission System (MITS) in the Sultanate of Oman. The objective is to improve voltage profile at substations supplying distribution companies and directly connected bulk customer. An objective function is used to maximize reactive power margin of generating units to maintain as much as possible reserves on different generators. The control parameters include existing voltage and reactive power control means, e.g. settings of generators’ excitation/AVR, transformer tap-changing, and capacitor bank switching. The constraints include operational limits of the above control devices in addition to allowable limits of busbar voltages, …


Particle Swarm Optimization Application In Power System, Engineer Radhey Shyam Meena, Deepa Sharma Jun 2013

Particle Swarm Optimization Application In Power System, Engineer Radhey Shyam Meena, Deepa Sharma

Radhey Shyam Meena

The modern power system around the world has grown in complexity of interconnection and power demand. The focus has shifted towards enhanced performance, increased customer focus, low cost, reliable and clean power. In this changed perspective, scarcity of energy resources, increasing power generation cost, environmental concern necessitates optimal economic dispatch. In reality power stations neither are at equal distances from load nor have similar fuel cost functions. Hence for providing cheaper power, load has to be distributed among various power stations in a way which results in lowest cost for generation. Practical economic dispatch (ED) problems have highly non-linear objective …


Fabricate A 2.4-Ghz Fractional-N Synthesizer, Hossein Ameri Mahabadi, Mahmoud Moghavvemi, A Attaran Jun 2013

Fabricate A 2.4-Ghz Fractional-N Synthesizer, Hossein Ameri Mahabadi, Mahmoud Moghavvemi, A Attaran

Hossein Ameri Mahabadi

No abstract provided.


Fabricate A 2.4-Ghz Fractional-N Synthesizer, H Ameri, Mahmoud Moghavvemi, A Attaran May 2013

Fabricate A 2.4-Ghz Fractional-N Synthesizer, H Ameri, Mahmoud Moghavvemi, A Attaran

Professor Mahmoud Moghavvemi

Fractional-N frequency synthesizers offer numerous advantages in terms of performance compared

to integer-N frequency synthesizers for emerging wireless communications applications.

Frequency synthesizers are used throughout communications systems for tuning the signal

frequencies needed for receiving and transmitting. As silicon CMOS technology has been applied at

higher frequencies, it has helped the expansion of wireless technology to a wide range of

applications.1,2 In particular, these synthesizers have supported applications requiring tuning with

fine resolution—from kHz steps to a few MHz—and low phase noise, on the order of -100 dBc/Hz

offset 10 kHz from the carrier.

Many of these synthesizers have been …


Wireless Transmission Network : A Imagine, Radhey Shyam Meena Engineer, Neeraj Kumar Garg Asst.Prof Apr 2013

Wireless Transmission Network : A Imagine, Radhey Shyam Meena Engineer, Neeraj Kumar Garg Asst.Prof

Radhey Shyam Meena

World cannot be imagined without electrical power. Generally the power is transmitted through transmission networks. This paper describes an original idea to eradicate the hazardous usage of electrical wires which involve lot of confusion in particularly organizing them. Imagine a future in which wireless power transfer is feasible: cell phones, household robots, mp3 players, laptop computers and other portable electronic devices capable of charging themselves without ever being plugged in freeing us from that final ubiquitous power wire. This paper includes the techniques of transmitting power without using wires with an efficiency of about 95% with non-radioactivemethods. In this paper …


A 6-U Commercial Constellation For Space Solar Power Supply To Other Spacecraft, Corey Bergsrud, Jeremy Straub Apr 2013

A 6-U Commercial Constellation For Space Solar Power Supply To Other Spacecraft, Corey Bergsrud, Jeremy Straub

Jeremy Straub

This poster presents early stage planning for a constellation

of 6-U CubeSats which will collect power from

the sun and supply it to other spacecraft in Earth orbit. Unlike

solar panels (which have a known decay rate), antenna

systems (such as would be required to receive microwavetransmitted

power) do not substantially decay over the

typical (or prospectively extended, under this model)

spacecraft lifetime. This allows a spacecraft to be built for

long-term operations (utilizing an electric propulsion technology

and/or a greater supply of conventional propellant)

and receive power from a lower-cost utility provider

spacecraft, which can be replaced on a …


Battery Energy Storage System In Solar Power Generation, Radhey Shyam Meena Er., Deepa Sharma Mar 2013

Battery Energy Storage System In Solar Power Generation, Radhey Shyam Meena Er., Deepa Sharma

Radhey Shyam Meena

Grid-connected solar PV dramatically changes the load profile of an electric utility customer. The expected widespread adoption of solar generation by customers on the distribution system poses significant challenges to system operators both in transient and steady state operation, from issues including voltage swings, sudden weather-induced changes in generation, and legacy protective devices designed with one-way power flow in mind


A Shade Tolerant Panel Design For Thin Film Photovoltaics, Sourabh Dongaonkar, Muhammad Alam Mar 2013

A Shade Tolerant Panel Design For Thin Film Photovoltaics, Sourabh Dongaonkar, Muhammad Alam

Sourabh Dongaonkar

We analyze the problem of partial shading of thin film photovoltaic (TFPV) panels, using full two dimensional circuit simulations. By accounting for the panel structure and typical array configurations, we can accurately account for the effect of various shading configurations at the cell and panel level. We demonstrate the limitation of external bypass diodes in protecting shaded cells from reverse breakdown, and explore the whole range of shading scenarios and their impact on reverse stress experienced by shaded cells. Based on the analysis, we identify the key aspects of shading problem, and formulate design rules for shadow aware geometrical design …


Reverse Stress Metastability Of Shunt Current In Cigs Solar Cells, Sourabh Dongaonkar, Erik Sheets, Rakesh Agrawal, Muhammad Alam Mar 2013

Reverse Stress Metastability Of Shunt Current In Cigs Solar Cells, Sourabh Dongaonkar, Erik Sheets, Rakesh Agrawal, Muhammad Alam

Sourabh Dongaonkar

Partial shading in thin film solar panels can result in reverse bias stress across shaded cells. Therefore, it is important to understand the effect of such reverse stress in commercially competitive PV technologies such as CIGS. In this paper, we systematically investigate the effect of moderate reverse bias on solution-processed CIGS solar cells. We subject the solar cells to varying degrees of reverse biases and continuously monitor the impact of the stress on dark current. We also explore the relaxation behavior of dark current following passive storage and the long term effect of the shadow stress on power output of …


Parallel Recording Of Neurotransmitters Release From Chromaffin Cells Using A 10 X 10 Cmos Ic Potentiostat Array With On-Chip Working Electrodes, Brian Kim, Adam Herbst, Sung Kim, Bradley Minch, Manfred Lindau Feb 2013

Parallel Recording Of Neurotransmitters Release From Chromaffin Cells Using A 10 X 10 Cmos Ic Potentiostat Array With On-Chip Working Electrodes, Brian Kim, Adam Herbst, Sung Kim, Bradley Minch, Manfred Lindau

Bradley Minch

Neurotransmitter release is modulated by many drugs and molecular manipulations. We present an active CMOS-based electrochemical biosensor array with high throughput capability (100 electrodes) for on-chip amperometric measurement of neurotransmitter release. The high-throughput of the biosensor array will accelerate the data collection needed to determine statistical significance of changes produced under varying conditions, from several weeks to a few hours. The biosensor is designed and fabricated using a combination of CMOS integrated circuit (IC) technology and a photolithography process to incorporate platinum working electrodes on-chip. We demonstrate the operation of an electrode array with integrated high-gain potentiostats and output time-division …


Novel Three-Phase Asymmetrical Cascaded Multilevel Voltage Source Inverter, Saad Mekhilef Feb 2013

Novel Three-Phase Asymmetrical Cascaded Multilevel Voltage Source Inverter, Saad Mekhilef

Saad Mekhilef

Series connection of power cells in asymmetrical cascaded configurations helps to cancel redundant output levels and maximise the number of different levels generated by the inverter. A new configuration of three-phase multilevel asymmetrical cascaded voltage source inverter is presented. This structure consists of series-connected sub-multilevel inverters blocks. The number of utilised switches, insulated gate driver circuits, voltage standing on switches, installation area and cost are considerably reduced. Cascaded-cell DC voltages in each inverter leg form an arithmetic sequence with common difference of E. With the selected inverter DC sources, high-frequency pulse-width modulation (PWM) control methods can be effectively applied without …


Ultra-Thin-Film Aln Contour-Mode Resonators For Sensing Applications, Matteo Rinaldi, Chiara Zuniga, Gianluca Piazza Feb 2013

Ultra-Thin-Film Aln Contour-Mode Resonators For Sensing Applications, Matteo Rinaldi, Chiara Zuniga, Gianluca Piazza

Matteo Rinaldi

This paper reports on the design and experimental verification of a new class of ultra-thin-film (250 nm) aluminum nitride (AlN) microelectromechanical system (MEMS) contour mode resonators (CMRs) suitable for the fabrication of ultra-sensitive gravimetric sensors. The device thickness was opportunely scaled in order to increase the mass sensitivity, while keeping a constant frequency of operation. In this first demonstration the resonance frequency of the device was set to 178 MHz and a mass sensitivity as high as 38.96 KHz⋅μm2/fg was attained. This device demonstrates the unique capability of the CMR-S technology to decouple resonance frequency from mass sensitivity.


Aln Contour-Mode Resonators For Narrow-Band Filters Above 3 Ghz, Matteo Rinaldi, Chiara Zuniga, Chengjie Zuo, Gianluca Piazza Feb 2013

Aln Contour-Mode Resonators For Narrow-Band Filters Above 3 Ghz, Matteo Rinaldi, Chiara Zuniga, Chengjie Zuo, Gianluca Piazza

Matteo Rinaldi

This paper reports on the design and experimental verification of a new class of thin-film (250 nm) super high frequency (SHF) laterally-vibrating piezoelectric microelectromechanical (MEMS) resonators suitable for the fabrication of narrow-band MEMS filters operating at frequencies above 3 GHz. The device dimensions have been opportunely scaled both in the lateral and vertical dimensions in order to excite a contour-extensional mode of vibration in nano features of an ultra-thin (250 nm) aluminum nitride (AlN) film. In this first demonstration two-port resonators vibrating up to 4.5 GHz were fabricated on the same die and attained electromechanical coupling, kt^2, in excess of …


Gravimetric Chemical Sensor Based On The Direct Integration Of Swnts On Aln Contour-Mode Mems Resonators, Matteo Rinaldi, Chiara Zuniga, Nipun Sinha, Marzie Taheri, Samuel M. Khamis, Alan T. Johnson, Gianluca Piazza Feb 2013

Gravimetric Chemical Sensor Based On The Direct Integration Of Swnts On Aln Contour-Mode Mems Resonators, Matteo Rinaldi, Chiara Zuniga, Nipun Sinha, Marzie Taheri, Samuel M. Khamis, Alan T. Johnson, Gianluca Piazza

Matteo Rinaldi

This paper reports on the first demonstration of a gravimetric chemical sensor based on direct integration of Single Wall Carbon Nanotubes (SWNTs) grown by Chemical Vapor Deposition (CVD) on AlN Contour-Mode MicroElectroMechanical (MEMS) resonators. In this first prototype the ability of SWNTs to readily adsorb volatile organic chemicals has been combined with the capability of AlN Contour-Mode MEMS resonator to provide for different levels of sensitivity due to separate frequencies of operation on the same die. Two devices with resonance frequencies of 287 MHz and 442 MHz have been exposed to different concentrations of DMMP in the range from 80 …


Ultra-Thin Super High Frequency Two-Port Aln Contour-Mode Resonators And Filters, Matteo Rinaldi, Chiara Zuniga, Chnegjie Zuo, Gianluca Piazza Feb 2013

Ultra-Thin Super High Frequency Two-Port Aln Contour-Mode Resonators And Filters, Matteo Rinaldi, Chiara Zuniga, Chnegjie Zuo, Gianluca Piazza

Matteo Rinaldi

This paper reports on the demonstration of a new class of ultra-thin (250 nm thick) super high frequency (SHF) AlN piezoelectric two-port resonators and filters. A thickness field excitation scheme was employed to excite a higher order contour extensional mode of vibration in an AlN nano plate (250 nm thick) above 3 GHz and synthesize a 1.96 GHz narrow-bandwidth channel-select filter. The devices of this work are able to operate over a frequency range from 1.9 to 3.5 GHz and are employed to synthesize the highest frequency MEMS filter based on electrically self-coupled AlN contour-mode resonators. Very narrow bandwidth (~ …


5-10 Ghz Aln Contour-Mode Nanoelectromechanical Resonators, Matteo Rinaldi, Chiara Zuniga, Gianluca Piazza Feb 2013

5-10 Ghz Aln Contour-Mode Nanoelectromechanical Resonators, Matteo Rinaldi, Chiara Zuniga, Gianluca Piazza

Matteo Rinaldi

This paper reports on the design and experimental verification of Super High Frequency (SHF) laterally vibrating NanoElctroMechanical (NEMS) resonators. For the first time, AlN piezoelectric nanoresonators with multiple frequencies of operation ranging between 5 and 10 GHz have been fabricated on the same chip and attained the highest f-Q product (4.6E12 Hz) ever reported in AlN contour-mode devices. These piezoelectric NEMS resonators are the first of their class to demonstrate on-chip sensing and actuation of nanostructures without the need of cumbersome or power consuming excitation and readout systems. Effective piezoelectric activity has been demonstrated in thin AlN films having vertical …


Ghz Range Nanoscaled Aln Contour-Mode Resonant Sensors (Cmr-S) With Self-Sustained Cmos Oscillator, Matteo Rinaldi, Chiara Zuniga, Chengjie Zuo, Gianluca Piazza Feb 2013

Ghz Range Nanoscaled Aln Contour-Mode Resonant Sensors (Cmr-S) With Self-Sustained Cmos Oscillator, Matteo Rinaldi, Chiara Zuniga, Chengjie Zuo, Gianluca Piazza

Matteo Rinaldi

This paper reports on the design and experimental verification of a new class of nanoscaled AlN Contour-Mode Resonant Sensors (CMR-S) for the detection of volatile organic chemicals (VOC) operating at frequencies above 1 GHz and connected to a chip-based CMOS oscillator circuit for direct frequency read-out. This work shows that by scaling the CMR-S to 250 nm in thickness and by operating at high frequencies (1 GHz) a limit of detection of ~35 zg/µm2 and a fast response time (<1 >ms) can be attained. In addition, the capability to detect concentrations of volatile organic compounds such as 2,6 dinitroluene (DNT) …


Ss-Dna Functionalized Ultra-Thin-Film Aln Contour-Mode Resonators With Self-Sustained Oscillator For Volatile Organic Chemical Detection, Matteo Rinaldi, Brandon Duick, Chiara Zuniga, Chengjie Zuo, Gianluca Piazza Feb 2013

Ss-Dna Functionalized Ultra-Thin-Film Aln Contour-Mode Resonators With Self-Sustained Oscillator For Volatile Organic Chemical Detection, Matteo Rinaldi, Brandon Duick, Chiara Zuniga, Chengjie Zuo, Gianluca Piazza

Matteo Rinaldi

This paper reports on the design and experimental verification of a new class of nanoscale gravimetric sensors based on ultra-thin-film AlN Contour-Mode Resonant Sensor (CMR-S) functionalized with ss-DNA and connected to a chip-based self-sustaining oscillator loop (fabricated in the ON Semiconductor 0.5 μm CMOS process) for direct frequency read-out. The 220 MHz oscillator based on the ultra-thin AlN CMR-S exhibits an Allan Variance of ∼20 Hz for 100 ms gate time. The sensor affinity for the adsorption of volatile organic chemicals such as 2,6 dinitroluene (DNT, a simulant for explosive vapors) is enhanced by functionalizing the top gold electrode of …


Nanoenabled Microelectromechanical Sensor For Volatile Organic Chemical Detection, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, A. T. Johnson, Gianluca Piazza Feb 2013

Nanoenabled Microelectromechanical Sensor For Volatile Organic Chemical Detection, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, A. T. Johnson, Gianluca Piazza

Matteo Rinaldi

A nanoenabled gravimetric chemical sensor prototype based on the large scale integration of single-stranded DNA (ss-DNA) decorated single-walled carbon nanotubes (SWNTs) as nanofunctionalization layer for aluminum nitride contour-mode resonant microelectromechanical (MEM) gravimetric sensors has been demonstrated. The capability of two distinct single strands of DNA bound to SWNTs to enhance differently the adsorption of volatile organic compounds such as dinitroluene (simulant for explosive vapor) and dymethyl-methylphosphonate (simulant for nerve agent sarin) has been verified experimentally. Different levels of sensitivity (17.3 and 28 KHz µm^2/fg) due to separate frequencies of operation (287 and 450 MHz) on the same die have also …


Super-High-Frequency Two-Port Aln Contour-Mode Resonators For Rf Applications, Matteo Rinaldi, Chiara Zuniga, Chengjie Zuo, Gianluca Piazza Feb 2013

Super-High-Frequency Two-Port Aln Contour-Mode Resonators For Rf Applications, Matteo Rinaldi, Chiara Zuniga, Chengjie Zuo, Gianluca Piazza

Matteo Rinaldi

This paper reports on the design and experimental verification of a new class of thin-film (250 nm) superhigh- frequency laterally-vibrating piezoelectric microelectromechanical (MEMS) resonators suitable for the fabrication of narrow-band MEMS filters operating at frequencies above 3 GHz. The device dimensions have been opportunely scaled both in the lateral and vertical dimensions to excite a contourextensional mode of vibration in nanofeatures of an ultra-thin (250 nm) AlN film. In this first demonstration, 2-port resonators vibrating up to 4.5 GHz have been fabricated on the same die and attained electromechanical coupling, kt^2, in excess of 1.5%. These devices are employed to …


Optimal Control Of A Grid Connected Photovoltaic System With Constant Switching Frequency, Djamila Rekioua Pr Feb 2013

Optimal Control Of A Grid Connected Photovoltaic System With Constant Switching Frequency, Djamila Rekioua Pr

REKIOUA Djamila Dr

This paper presents maximum power point tracking (MPPT) algorithms for grid connected photovoltaic system. Due to the instantaneous changing of solar irradiance and temperature, it is desirable to determine the optimal voltage that ensures maximum energy yield. In order to optimize the photovoltaic energy generation, the MPPT is integrated in the inverter control. Perturb & Observ (P&O), Incremental Conductance (Inc Cond) techniques and fuzzy logic controller (FLC) are applied. A comparison shows the effectiveness of the FLC. The maximum power generated by the photovoltaic system is sent to the power grid to be consumed by the nearest customers. A constant …


Cause And Prevention Of Moisture-Induced Degradation Of Resistance Random Access Memory Nanodevices, Albert Chen Jan 2013

Cause And Prevention Of Moisture-Induced Degradation Of Resistance Random Access Memory Nanodevices, Albert Chen

Albert B Chen

Dielectric thin films in nanodevices may absorb moisture, leading to physical changes and property/performance degradation, such as altered data storage and readout in resistance random access memory. Here we demonstrate using a nanometallic memory that such degradation proceeds via nanoporosity, which facilitates water wetting in otherwise nonwetting dielectrics. Electric degradation only occurs when the device is in the charge-storage state, which provides a nanoscale dielectrophoretic force directing H2O to internal field centers (sites of trapped charge) to enable bond rupture and charged hydroxyl formation. While these processes are dramatically enhanced by an external DC or AC field and electron-donating electrodes, …


At89c51 Microcontroller Based Control Model For Hybrid Assistive Limb (Knee ), Suresh L Jan 2013

At89c51 Microcontroller Based Control Model For Hybrid Assistive Limb (Knee ), Suresh L

suresh L

In this paper, a controlling system is implemented for a wearable walking supporting device so called as Hybrid Assistive Limb. The control circuit is implemented without considering the biological signals of the human body for the knee part, which is based on the knee joint moment from the human body model. The control and a driving circuit s are implemented to assistive the knee as for the requir ement of knee joint dynamics.