Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Resource Efficient Design Of Quantum Circuits For Cryptanalysis And Scientific Computing Applications, Edgard Munoz-Coreas Jan 2020

Resource Efficient Design Of Quantum Circuits For Cryptanalysis And Scientific Computing Applications, Edgard Munoz-Coreas

Theses and Dissertations--Electrical and Computer Engineering

Quantum computers offer the potential to extend our abilities to tackle computational problems in fields such as number theory, encryption, search and scientific computation. Up to a superpolynomial speedup has been reported for quantum algorithms in these areas. Motivated by the promise of faster computations, the development of quantum machines has caught the attention of both academics and industry researchers. Quantum machines are now at sizes where implementations of quantum algorithms or their components are now becoming possible. In order to implement quantum algorithms on quantum machines, resource efficient circuits and functional blocks must be designed. In this work, we …


Rapid Prototyping Of Nanostructures With Electron Beam Induced Processing, Samaneh Esfandiarpour Jan 2020

Rapid Prototyping Of Nanostructures With Electron Beam Induced Processing, Samaneh Esfandiarpour

Theses and Dissertations--Electrical and Computer Engineering

Focused electron beam induced processing (FEBIP) is a nano-scale fabrication technique that allows the direct deposition of functional materials. However, it suffers from significant drawbacks, such as high cost, low speed, unavailable precursors for many materials and low purity of deposits. Liquid-phase focused electron beam induced processes (LP-FEBIP) are being investigated due to the potential benefits over the gas phase technique. In this method, deposition or etching occurs at the interface between a substrate and a bulk liquid. In this work, electron beam induced deposition of copper nanostructures from aqueous solutions of copper sulfate is demonstrated. The addition of sulfuric …


End-To-End Prediction Of Weld Penetration In Real Time Based On Deep Learning, Wenhua Jiao Jan 2020

End-To-End Prediction Of Weld Penetration In Real Time Based On Deep Learning, Wenhua Jiao

Theses and Dissertations--Electrical and Computer Engineering

Welding is an important joining technique that has been automated/robotized. In automated/robotic welding applications, however, the parameters are preset and are not adaptively adjusted to overcome unpredicted disturbances, which cause these applications to not be able to meet the standards from welding/manufacturing industry in terms of quality, efficiency, and individuality. Combining information sensing and processing with traditional welding techniques is a significant step toward revolutionizing the welding industry. In practical welding, the weld penetration as measured by the back-side bead width is a critical factor when determining the integrity of the weld produced. However, the back-side bead width is difficult …