Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Electronics

City University of New York (CUNY)

Smart grid

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Ict-Enabled Control And Energy Management Of Community Microgrids For Resilient Smart Grid Operation, Mahmoud Saleh Jan 2019

Ict-Enabled Control And Energy Management Of Community Microgrids For Resilient Smart Grid Operation, Mahmoud Saleh

Dissertations and Theses

Our research has focused on developing novel controllers and algorithms to enhance the resilience of the power grid and increase its readiness level against major disturbances.

The U.S. power grid currently encounters two main challenges: (1) the massive and extended blackouts caused by natural disasters, such as hurricane Sandy. These blackouts have raised a national call to explore innovative approaches for enhanced grid resiliency. Scrutinizing how previous blackouts initiated and propagated throughout the power grid, the major reasons are lack of situational awareness, lack of real-time monitoring and control, underdeveloped controllers at both the transmission and distribution levels, and lack …


Hardware Based Testing Of Communication Based Control For Dc Microgrid, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed Nov 2017

Hardware Based Testing Of Communication Based Control For Dc Microgrid, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed

Publications and Research

This paper further describes our work presented in Industry Application Society 2016 Conference, with more details related to the control and operation of the microgrid. The DC microgrid facility was custom designed and implemented at CCNY with minimal off-the-shelf components to enable flexibility and reconfiguration capability. The design steps, requirements, and experimental results of the developed testbed were discussed. As a case study, a central controller for energy management algorithm was developed and tested under several operational scenarios. The experimental results verify the applicability of the developed testbed for validating DC microgrid controllers.


Centralized Control For Dc Microgrid Using Finite State Machine, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed Apr 2017

Centralized Control For Dc Microgrid Using Finite State Machine, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed

Publications and Research

In this paper, an autonomous communication-based centralized control for DC microgrids (MG) has been developed and implemented. The proposed controller enables smooth transition between various operating modes. Finite state machine (FSM) has been used to mathematically describe the various operating modes (states), and events that may lead to mode changes (transitions). Therefore, the developed centralized controller aims at optimizing the performance of MG during all possible operational scenarios, while maintaining its reliability and stability. Results of selected cases have been presented. These results show stable transition between modes, verifying the validity and applicability of the proposed controller.


Impact Of Clustering Microgrids On Their Stability And Resilience During Blackouts, Mahmoud S. Saleh, Ammar Althaibani, Yusef Esa, Yassine Mhandi, Ahmed Mohamed Apr 2016

Impact Of Clustering Microgrids On Their Stability And Resilience During Blackouts, Mahmoud S. Saleh, Ammar Althaibani, Yusef Esa, Yassine Mhandi, Ahmed Mohamed

Publications and Research

In this paper, the impact of clustering multiple microgrids during blackouts, on their stability and supply availability, will be investigated. Microgrids have the capability of satisfying their emergency loads during blackouts. However, distributed energy resources (DERs)-dominated microgrids are affected by the uncertainty of their input energy supply, e.g. impact of solar irradiance on photovoltaic (PV) output. Moreover, an individual islanded microgrid is prone to instability issues due to large sudden load/generation changes. In order to increase the supply security, and enhance system stability, we propose to use the existing distribution grid infrastructure, if applicable, during blackouts to form microgrid clusters. …