Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Engineering

Smart System For Wheat Diseases Early Detection, Rustam Baratov, Himola Sunnatillayeva, Almardon Mamatovich Mustafoqulov Dec 2023

Smart System For Wheat Diseases Early Detection, Rustam Baratov, Himola Sunnatillayeva, Almardon Mamatovich Mustafoqulov

Chemical Technology, Control and Management

This paper presents a smart system for early detection of wheat plant diseases in the vegetation period. The proposed smart system allows detecting three types of wheat diseases, particularly yellow rust, powdery mildew and septoria at early stage and significantly improves the soil and ecology by locally spraying harmful chemicals just to sickness plants. The proposed diagnostic program is created in the C++ programming language. The basic structure of the smart system consists of Raspberry PI 4 MODULE, Logitech HD Pro Webcam C920, buzzer, HC-SR04 distance sensor, DC motor driver, AC motor, power supply, relay and some digital devices.


Flying Free: A Research Overview Of Deep Learning In Drone Navigation Autonomy, Thomas Lee, Susan Mckeever, Jane Courtney Jun 2021

Flying Free: A Research Overview Of Deep Learning In Drone Navigation Autonomy, Thomas Lee, Susan Mckeever, Jane Courtney

Articles

With the rise of Deep Learning approaches in computer vision applications, significant strides have been made towards vehicular autonomy. Research activity in autonomous drone navigation has increased rapidly in the past five years, and drones are moving fast towards the ultimate goal of near-complete autonomy. However, while much work in the area focuses on specific tasks in drone navigation, the contribution to the overall goal of autonomy is often not assessed, and a comprehensive overview is needed. In this work, a taxonomy of drone navigation autonomy is established by mapping the definitions of vehicular autonomy levels, as defined by the …


Constructing And Analyzing Neural Network Dynamics For Information Objectives And Working Memory, Elham Ghazizadeh Ahsaei Jan 2021

Constructing And Analyzing Neural Network Dynamics For Information Objectives And Working Memory, Elham Ghazizadeh Ahsaei

McKelvey School of Engineering Theses & Dissertations

Creation of quantitative models of neural functions and discovery of underlying principles of how neural circuits learn and compute are long-standing challenges in the field of neuroscience. In this work, we blend ideas from computational neuroscience, information and control theories with machine learning to shed light on how certain key functions are encoded through the dynamics of neural circuits. In this regard, we pursue the ‘top-down’ modeling approach of engineering neuroscience to relate brain functions to basic generative dynamical mechanisms. Our approach encapsulates two distinct paradigms in which ‘function’ is understood. In the first part of this research, we explore …


Scatter Reduction By Exploiting Behaviour Of Convolutional Neural Networks In Frequency Domain, Carlos Ivan Jerez Gonzalez Dec 2019

Scatter Reduction By Exploiting Behaviour Of Convolutional Neural Networks In Frequency Domain, Carlos Ivan Jerez Gonzalez

Theses and Dissertations

In X-ray imaging, scattered radiation can produce a number of artifacts that greatly

undermine the image quality. There are hardware solutions, such as anti-scatter grids.

However, they are costly. A software-based solution is a better option because it is

cheaper and can achieve a higher scatter reduction. Most of the current software-based

approaches are model-based. The main issues with them are the lack of flexibility, expressivity, and the requirement of a model. In consideration of this, we decided to apply

Convolutional Neural Networks (CNNs), since they do not have any of the previously

mentioned issues.

In our approach we split …


Robust Engineering Of Dynamic Structures In Complex Networks, Walter Botongo Bomela Aug 2018

Robust Engineering Of Dynamic Structures In Complex Networks, Walter Botongo Bomela

McKelvey School of Engineering Theses & Dissertations

Populations of nearly identical dynamical systems are ubiquitous in natural and engineered systems, in which each unit plays a crucial role in determining the functioning of the ensemble. Robust and optimal control of such large collections of dynamical units remains a grand challenge, especially, when these units interact and form a complex network. Motivated by compelling practical problems in power systems, neural engineering and quantum control, where individual units often have to work in tandem to achieve a desired dynamic behavior, e.g., maintaining synchronization of generators in a power grid or conveying information in a neuronal network; in this dissertation, …


Influence Of Neural Network Training Parameters On Short-Term Wind Forecasting, Adel Brka, Yasir M. Al-Abdeli, Ganesh Kothapalli Jan 2016

Influence Of Neural Network Training Parameters On Short-Term Wind Forecasting, Adel Brka, Yasir M. Al-Abdeli, Ganesh Kothapalli

Research outputs 2014 to 2021

This paper investigates factors which can affect the accuracy of short-term wind speed prediction when done over long periods spanning different seasons. Two types of neural networks (NNs) are used to forecast power generated via specific horizontal axis wind turbines. Meteorological data used are for a specific Western Australian location. Results reveal that seasonal variations affect the prediction accuracy of the wind resource, but the magnitude of this influence strongly depends on the details of the NN deployed. Factors investigated include the span of the time series needed to initially train the networks, the temporal resolution of these data, the …


New Covariance-Based Feature Extraction Methods For Classification And Prediction Of High-Dimensional Data, Mopelola Adediwura Sofolahan Oct 2013

New Covariance-Based Feature Extraction Methods For Classification And Prediction Of High-Dimensional Data, Mopelola Adediwura Sofolahan

Open Access Dissertations

When analyzing high dimensional data sets, it is often necessary to implement feature extraction methods in order to capture relevant discriminating information useful for the purposes of classification and prediction. The relevant information can typically be represented in lower-dimensional feature spaces, and a widely used approach for this is the principal component analysis (PCA) method. PCA efficiently compresses information into lower dimensions; however, studies indicate that it is not optimal for feature extraction especially when dealing with classification problems. Furthermore, for high-dimensional data having limited observations, as is typically the case with remote sensing data and nonstationary data such as …


Information Measures For Statistical Orbit Determination, Alinda Kenyana Mashiku Jan 2013

Information Measures For Statistical Orbit Determination, Alinda Kenyana Mashiku

Open Access Dissertations

The current Situational Space Awareness (SSA) is faced with a huge task of tracking the increasing number of space objects. The tracking of space objects requires frequent and accurate monitoring for orbit maintenance and collision avoidance using methods for statistical orbit determination. Statistical orbit determination enables us to obtain estimates of the state and the statistical information of its region of uncertainty given by the probability density function (PDF). As even collision events with very low probability are important, accurate prediction of collisions require the representation of the full PDF of the random orbit state. Through representing the full PDF …


Low Complexity Feature Extraction For Classification Of Harmonic Signals, Peter William Sep 2011

Low Complexity Feature Extraction For Classification Of Harmonic Signals, Peter William

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this dissertation, feature extraction algorithms have been developed for extraction of characteristic features from harmonic signals. The common theme for all developed algorithms is the simplicity in generating a significant set of features directly from the time domain harmonic signal. The features are a time domain representation of the composite, yet sparse, harmonic signature in the spectral domain.The algorithms are adequate for low-power unattended sensors which perform sensing, feature extraction, and classification in a stand-alone scenario. The first algorithm generates the characteristic features using only the duration between successive zero-crossing intervals. The second algorithm estimates the harmonics’ amplitudes of …


Statistical Anomaly Denial Of Service And Reconnaissance Intrusion Detection, Zheng Zhang May 2004

Statistical Anomaly Denial Of Service And Reconnaissance Intrusion Detection, Zheng Zhang

Dissertations

This dissertation presents the architecture, methods and results of the Hierarchical Intrusion Detection Engine (HIDE) and the Reconnaissance Intrusion Detection System (RIDS); the former is denial-of-service (DoS) attack detector while the latter is a scan and probe (P&S) reconnaissance detector; both are statistical anomaly systems.

The HIDE is a packet-oriented, observation-window using, hierarchical, multi-tier, anomaly based network intrusion detection system, which monitors several network traffic parameters simultaneously, constructs a 64-bin probability density function (PDF) for each, statistically compares it to a reference PDF of normal behavior using a similarity metric, then combines the results into an anomaly status vector that …


Tcm Decoding Using Neural Networks, Edit J. Kaminsky, Nikhil Deshpande Jan 2003

Tcm Decoding Using Neural Networks, Edit J. Kaminsky, Nikhil Deshpande

Electrical Engineering Faculty Publications

This paper presents a neural decoder for trellis coded modulation (TCM) schemes. Decoding is performed with Radial Basis Function Networks and Multi-Layer Perceptrons. The neural decoder effectively implements an adaptive Viterbi algorithm for TCM which learns communication channel imperfections. The implementation and performance of the neural decoder for trellis encoded 16-QAM with amplitude imbalance are analyzed.


Fuzzified Neural Network Approach For Load Forecasting Problems, D. K. Chaturvedi, P. S. Satsangi, P. K. Kalra Mar 2001

Fuzzified Neural Network Approach For Load Forecasting Problems, D. K. Chaturvedi, P. S. Satsangi, P. K. Kalra

D. K. Chaturvedi Dr.

In load forecasting, the operator or the concerned person uses his or her experience and intuitions to obtain a good guess of the load demand. This guess is normally supported by sophisticated mathematical prediction techniques. The short term load not only varies from hour to hour, but is also influenced by the nature of events, load demand, the type of the load considered, seasonal variations, weekend day or holidays, and also by sudden demand and loss of load. Accordingly, it is quite clear that the electrical load-forecasting problem is quite difficult to model with mathematical difference or differential equations. In …


Cepstral And Auditory Model Features For Speaker Recognition, John M. Colombi Dec 1992

Cepstral And Auditory Model Features For Speaker Recognition, John M. Colombi

Theses and Dissertations

The TIMIT and KING databases, as well as a ten day AFIT speaker corpus, are used to compare proven spectral processing techniques to an auditory neural representation for speaker identification. The feature sets compared were Linear Predictive Coding (LPC) cepstral coefficients and auditory nerve firing rates using the Payton model. This auditory model provides for the mechanisms found in the human middle and inner auditory periphery as well as neural transduction. Clustering algorithms were used to generate speaker specific codebooks - one statistically based and the other a neural approach. These algorithms are the Linde-Buzo-Gray (LBG) algorithm and a Kohonen …