Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Structural Organization And Chemical Activity Revealed By New Developments In Single-Molecule Fluorescence And Orientation Imaging, Tianben Ding Aug 2020

Structural Organization And Chemical Activity Revealed By New Developments In Single-Molecule Fluorescence And Orientation Imaging, Tianben Ding

McKelvey School of Engineering Theses & Dissertations

Single-molecule (SM) fluorescence and its localization are important and versatile tools for understanding and quantifying dynamical nanoscale behavior of nanoparticles and biological systems. By actively controlling the concentration of fluorescent molecules and precisely localizing individual single molecules, it is possible to overcome the classical diffraction limit and achieve 'super-resolution' with image resolution on the order of 10 nanometers.

Single molecules also can be considered as nanoscale sensors since their fluorescence changes in response to their local nanoenvironment. This dissertation discusses extending this SM approach to resolve heterogeneity and dynamics of nanoscale materials and biophysical structures by using positions and orientations …


Convex Relaxations For Particle-Gradient Flow With Applications In Super-Resolution Single-Molecule Localization Microscopy, Hesam Mazidisharfabadi Aug 2020

Convex Relaxations For Particle-Gradient Flow With Applications In Super-Resolution Single-Molecule Localization Microscopy, Hesam Mazidisharfabadi

McKelvey School of Engineering Theses & Dissertations

Single-molecule localization microscopy (SMLM) techniques have become advanced bioanalytical tools by quantifying the positions and orientations of molecules in space and time at the nanoscale. With the noisy and heterogeneous nature of SMLM datasets in mind, we discuss leveraging particle-gradient flow 1) for quantifying the accuracy of localization algorithms with and without ground truth and 2) as a basis for novel, model-driven localization algorithms with empirically robust performance. Using experimental data, we demonstrate that overlapping images of molecules, a typical consequence of densely packed biological structures, cause biases in position estimates and reconstruction artifacts. To minimize such biases, we develop …


Self Capacitance Based Wireless Power Transfer For Wearable Electronics: Theory And Implementation, Yarub Omer Alazzawi May 2020

Self Capacitance Based Wireless Power Transfer For Wearable Electronics: Theory And Implementation, Yarub Omer Alazzawi

McKelvey School of Engineering Theses & Dissertations

Wireless power transfer (WPT)


Joint Estimation Of Attenuation And Scatter For Tomographic Imaging With The Broken Ray Transform, Michael Ray Walker May 2020

Joint Estimation Of Attenuation And Scatter For Tomographic Imaging With The Broken Ray Transform, Michael Ray Walker

McKelvey School of Engineering Theses & Dissertations

The single-scatter approximation is fundamental for many tomographic imaging problems. This class broadly includes x-ray scattering imaging and optical scatter imaging for certain media. In all cases, noisy measurements are affected by both local events and nonlocal attenuation. Related applications typically focus on reconstructing one of two images: scatter density or total attenuation. However, both images are media specific. Both images are useful for object identification. Knowledge of one image aides estimation of the other, especially when estimating images from noisy data.Joint image recovery has been demonstrated analytically in the context of the broken ray transform (BRT) for attenuation and …


Cognitive Radar Detection In Nonstationary Environments And Target Tracking, Yijian Xiang May 2020

Cognitive Radar Detection In Nonstationary Environments And Target Tracking, Yijian Xiang

McKelvey School of Engineering Theses & Dissertations

Target detection and tracking are the most fundamental and important problems in a wide variety of defense and civilian radar systems. In recent years, to cope with complex environments and stealthy targets, the concept of cognitive radars has been proposed to integrate intelligent modules into conventional radar systems. To achieve better performance, cognitive radars are designed to sense, learn from, and adapt to environments. In this dissertation, we introduce cognitive radars for target detection in nonstationary environments and cognitive radar networks for target tracking.For target detection, many algorithms in the literature assume a stationary environment (clutter). However, in practical scenarios, …