Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Reconstruction Algorithms For Novel Joint Imaging Techniques In Pet, Homayoon Ranjbar Dec 2017

Reconstruction Algorithms For Novel Joint Imaging Techniques In Pet, Homayoon Ranjbar

McKelvey School of Engineering Theses & Dissertations

Positron emission tomography (PET) is an important functional in vivo imaging modality with many clinical applications. Its enormously wide range of applications has made both research and industry combine it with other imaging modalities such as X-ray computed tomography (CT) or magnetic resonance imaging (MRI). The general purpose of this work is to study two cases in PET where the goal is to perform image reconstruction jointly on two data types.

The first case is the Beta-Gamma image reconstruction. Positron emitting isotopes, such as 11C, 13N, and 18F, can be used to label molecules, and tracers, such …


Bio-Inspired Multi-Spectral And Polarization Imaging Sensors For Image-Guided Surgery, Nimrod Missael Garcia Dec 2017

Bio-Inspired Multi-Spectral And Polarization Imaging Sensors For Image-Guided Surgery, Nimrod Missael Garcia

McKelvey School of Engineering Theses & Dissertations

Image-guided surgery (IGS) can enhance cancer treatment by decreasing, and ideally eliminating, positive tumor margins and iatrogenic damage to healthy tissue. Current state-of-the-art near-infrared fluorescence imaging systems are bulky, costly, lack sensitivity under surgical illumination, and lack co-registration accuracy between multimodal images. As a result, an overwhelming majority of physicians still rely on their unaided eyes and palpation as the primary sensing modalities to distinguish cancerous from healthy tissue. In my thesis, I have addressed these challenges in IGC by mimicking the visual systems of several animals to construct low power, compact and highly sensitive multi-spectral and color-polarization sensors. I …


Extrinsic And Intrinsic Control Of Integrative Processes In Neural Systems, Anirban Nandi Dec 2017

Extrinsic And Intrinsic Control Of Integrative Processes In Neural Systems, Anirban Nandi

McKelvey School of Engineering Theses & Dissertations

At the simplest dynamical level, neurons can be understood as integrators. That is, neurons accumulate excitation from afferent neurons until, eventually, a threshold is reached and they produce a spike. Here, we consider the control of integrative processes in neural circuits in two contexts. First, we consider the problem of extrinsic neurocontrol, or modulating the spiking activity of neural circuits using stimulation, as is desired in a wide range of neural engineering applications. From a control-theoretic standpoint, such a problem presents several interesting nuances, including discontinuity in the dynamics due to the spiking process, and the technological limitations associated with …


Novel Pet Systems And Image Reconstruction With Actively Controlled Geometry, Ke Li Aug 2017

Novel Pet Systems And Image Reconstruction With Actively Controlled Geometry, Ke Li

McKelvey School of Engineering Theses & Dissertations

Positron Emission Tomography (PET) provides in vivo measurement of imaging ligands that are labeled with positron emitting radionuclide. Since its invention, most PET scanners have been designed to have a group of gamma ray detectors arranged in a ring geometry, accommodating the whole patient body. Virtual Pinhole PET incorporates higher resolution detectors being placed close to the Region-of-Interest (ROI) within the imaging Field-of-View (FOV) of the whole-body scanner, providing better image resolution and contrast recover. To further adapt this technology to a wider range of diseases, we proposed a second generation of virtual pinhole PET using actively controlled high resolution …


Numerical Methods For Nonlinear Optimal Control Problems And Their Applications In Indoor Climate Control, Runxin He Aug 2017

Numerical Methods For Nonlinear Optimal Control Problems And Their Applications In Indoor Climate Control, Runxin He

McKelvey School of Engineering Theses & Dissertations

Efficiency, comfort, and convenience are three major aspects in the design of control systems for residential Heating, Ventilation, and Air Conditioning (HVAC) units. In this dissertation, we study optimization-based algorithms for HVAC control that minimizes energy consumption while maintaining a desired temperature, or even human comfort in a room. Our algorithm uses a Computer Fluid Dynamics (CFD) model, mathematically formulated using Partial Differential Equations (PDEs), to describe the interactions between temperature, pressure, and air flow. Our model allows us to naturally formulate problems such as controlling the temperature of a small region of interest within a room, or to control …