Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Lung Cancer Subtype Differentiation From Positron Emission Tomography Images, Oğuzhan Ayyildiz, Zafer Aydin, Bülent Yilmaz, Seyhan Karaçavuş, Kübra Şenkaya, Semra İçer, Erdem Arzu Taşdemi̇r, Eser Kaya Jan 2020

Lung Cancer Subtype Differentiation From Positron Emission Tomography Images, Oğuzhan Ayyildiz, Zafer Aydin, Bülent Yilmaz, Seyhan Karaçavuş, Kübra Şenkaya, Semra İçer, Erdem Arzu Taşdemi̇r, Eser Kaya

Turkish Journal of Electrical Engineering and Computer Sciences

Lung cancer is one of the deadly cancer types, and almost 85 % of lung cancers are nonsmall cell lung cancer (NSCLC). In the present study we investigated classification and feature selection methods for the differentiation of two subtypes of NSCLC, namely adenocarcinoma (ADC) and squamous cell carcinoma (SqCC). The major advances in understanding the effects of therapy agents suggest that future targeted therapies will be increasingly subtype specific. We obtained positron emission tomography (PET) images of 93 patients with NSCLC, 39 of which had ADC while the rest had SqCC. Random walk segmentation was applied to delineate three-dimensional tumor …


Lung Cancer Brachytherapy: Robotics-Assisted Minimally Invasive Approach, Edward Yu, Craig Lewis, Ana Trejos, Rajni Patel, Richard Malthaner Jul 2015

Lung Cancer Brachytherapy: Robotics-Assisted Minimally Invasive Approach, Edward Yu, Craig Lewis, Ana Trejos, Rajni Patel, Richard Malthaner

Richard A. Malthaner

New technological concepts have been evolving to manage the relative poor prognosis of lung cancer. Brachytherapy is becoming an option for both unresectable and early resectable lung cancer. Three-dimensional ultrasound (US) of lung tumours and image-guided minimally invasive robotics-assisted brachytherapy are feasible for dosimetry planning and management of lung tumours. The present article reviews the current knowledge of lung brachytherapy and discusses its potential in future management of lung cancer.


Mira V: An Integrated System For Minimally Invasive Robot-Assisted Lung Brachytherapy, A. Trejos, A. Lin, S. Mohan, H. Bassan, C. Edirisinghe, R. Patel, C. Lewis, E. Yu, A. Fenster, R. Malthaner Jul 2015

Mira V: An Integrated System For Minimally Invasive Robot-Assisted Lung Brachytherapy, A. Trejos, A. Lin, S. Mohan, H. Bassan, C. Edirisinghe, R. Patel, C. Lewis, E. Yu, A. Fenster, R. Malthaner

Richard A. Malthaner

An integrated system for minimally invasive robot-assisted image-guided lung brachytherapy has been developed. The system incorporates an experimental setup for accurate radioactive seed placement with commercially available dosimetry planning software. The end result is a complete system that allows planning and executing a brachytherapy procedure with increased accuracy. The results of the in vitro seed placement evaluation show that seed misplacement has a significant effect on the volume receiving more than 200% of the dose (V200), and the minimum dosage received by 90% of the volume (D90).


Lung Cancer Brachytherapy: Robotics-Assisted Minimally Invasive Approach, Edward Yu, Craig Lewis, Ana Trejos, Rajni Patel, Richard Malthaner Jul 2015

Lung Cancer Brachytherapy: Robotics-Assisted Minimally Invasive Approach, Edward Yu, Craig Lewis, Ana Trejos, Rajni Patel, Richard Malthaner

Richard A. Malthaner

New technological concepts have been evolving to manage the relative poor prognosis of lung cancer. Brachytherapy is becoming an option for both unresectable and early resectable lung cancer. Three-dimensional ultrasound (US) of lung tumours and image-guided minimally invasive robotics-assisted brachytherapy are feasible for dosimetry planning and management of lung tumours. The present article reviews the current knowledge of lung brachytherapy and discusses its potential in future management of lung cancer.


Mira V: An Integrated System For Minimally Invasive Robot-Assisted Lung Brachytherapy, A. Trejos, A. Lin, S. Mohan, H. Bassan, C. Edirisinghe, R. Patel, C. Lewis, E. Yu, A. Fenster, R. Malthaner Jul 2015

Mira V: An Integrated System For Minimally Invasive Robot-Assisted Lung Brachytherapy, A. Trejos, A. Lin, S. Mohan, H. Bassan, C. Edirisinghe, R. Patel, C. Lewis, E. Yu, A. Fenster, R. Malthaner

Richard A. Malthaner

An integrated system for minimally invasive robot-assisted image-guided lung brachytherapy has been developed. The system incorporates an experimental setup for accurate radioactive seed placement with commercially available dosimetry planning software. The end result is a complete system that allows planning and executing a brachytherapy procedure with increased accuracy. The results of the in vitro seed placement evaluation show that seed misplacement has a significant effect on the volume receiving more than 200% of the dose (V200), and the minimum dosage received by 90% of the volume (D90).


Internav3d: A Navigation Tool For Robot-Assisted Needle-Based Intervention For The Lung, Srikanth Bhattad Dec 2013

Internav3d: A Navigation Tool For Robot-Assisted Needle-Based Intervention For The Lung, Srikanth Bhattad

Electronic Thesis and Dissertation Repository

Lung cancer is one of the leading causes of cancer deaths in North America. There are recent advances in cancer treatment techniques that can treat cancerous tumors, but require a real-time imaging modality to provide intraoperative assistive feedback. Ultrasound (US) imaging is one such modality. However, while its application to the lungs has been limited because of the deterioration of US image quality (due to the presence of air in the lungs); recent work has shown that appropriate lung deflation can help to improve the quality sufficiently to enable intraoperative, US-guided robotics-assisted techniques to be used. The work described in …


Lung Cancer Brachytherapy: Robotics-Assisted Minimally Invasive Approach, Edward Yu, Craig Lewis, Ana Trejos, Rajni Patel, Richard Malthaner Sep 2011

Lung Cancer Brachytherapy: Robotics-Assisted Minimally Invasive Approach, Edward Yu, Craig Lewis, Ana Trejos, Rajni Patel, Richard Malthaner

Edward Yu

New technological concepts have been evolving to manage the relative poor prognosis of lung cancer. Brachytherapy is becoming an option for both unresectable and early resectable lung cancer. Three-dimensional ultrasound (US) of lung tumours and image-guided minimally invasive robotics-assisted brachytherapy are feasible for dosimetry planning and management of lung tumours. The present article reviews the current knowledge of lung brachytherapy and discusses its potential in future management of lung cancer.


Mira V: An Integrated System For Minimally Invasive Robot-Assisted Lung Brachytherapy, A. Trejos, A. Lin, S. Mohan, H. Bassan, C. Edirisinghe, R. Patel, C. Lewis, E. Yu, A. Fenster, R. Malthaner Apr 2008

Mira V: An Integrated System For Minimally Invasive Robot-Assisted Lung Brachytherapy, A. Trejos, A. Lin, S. Mohan, H. Bassan, C. Edirisinghe, R. Patel, C. Lewis, E. Yu, A. Fenster, R. Malthaner

Edward Yu

An integrated system for minimally invasive robot-assisted image-guided lung brachytherapy has been developed. The system incorporates an experimental setup for accurate radioactive seed placement with commercially available dosimetry planning software. The end result is a complete system that allows planning and executing a brachytherapy procedure with increased accuracy. The results of the in vitro seed placement evaluation show that seed misplacement has a significant effect on the volume receiving more than 200% of the dose (V200), and the minimum dosage received by 90% of the volume (D90).