Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Exposure

Articles 1 - 2 of 2

Full-Text Articles in Engineering

The Fabrication Of High-Aspect Ratio Gratings For Talbot Interferometer With Medical Imaging Application., Vikaram Singh May 2018

The Fabrication Of High-Aspect Ratio Gratings For Talbot Interferometer With Medical Imaging Application., Vikaram Singh

LSU Master's Theses

X-ray Phase contrast-based Talbot interferometer creates high contrast between weak and strong absorbing materials, which makes it effective in imaging soft tissues. However, its performance is bounded by the aspect-ratio, features and symmetry of its gratings. For 40 KeV energy X-rays, the analyzer grating thickness should be 100 µm or more to achieve > 90% absorption in order to obtain high contrast images. Moreover, the smaller period in grating is desired for higher resolution. Therefore, researchers are exploring various fabrication techniques to achieve greater aspect-ratio gratings. Utilizing modern LIGA techniques, the aspect-ratio of gratings can be improved with a simplified …


Cell Stimulation And Calcium Mobilization By Picosecond Electric Pulses, Iurii Semenov, Shu Xiao, Dongkoo Kang, Karl H. Schoenbach, Andrei G. Pakhomov Jan 2015

Cell Stimulation And Calcium Mobilization By Picosecond Electric Pulses, Iurii Semenov, Shu Xiao, Dongkoo Kang, Karl H. Schoenbach, Andrei G. Pakhomov

Bioelectrics Publications

We tested if picosecond electric pulses (psEP; 190 kV/cm, 500 ps at 50% height), which are much shorter than channel activation time, can activate voltage-gated (VG) channels. Cytosolic Ca2+ was monitored by Fura-2 ratiometric imaging in GH3 and NG108 cells (which express multiple types of VG calcium channels, VGCC), and in CHO cells (which express no VGCC). Trains of up to 100 psEP at 1 kHz elicited no response in CHO cells. However, even a single psEP significantly increased Ca2+ in both GH3 (by 114 +/- 48 nM) and NG108 cells (by 6 +/- 1.1 nM). Trains of …