Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Optimal Combinations Of Utility Level Renewable Generators For A Net Zero Energy Microgrid Considering Different Utility Charge Rates, Evan S. Jones, Huangjie Gong, Dan M. Ionel Nov 2019

Optimal Combinations Of Utility Level Renewable Generators For A Net Zero Energy Microgrid Considering Different Utility Charge Rates, Evan S. Jones, Huangjie Gong, Dan M. Ionel

Power and Energy Institute of Kentucky Faculty Publications

High initial investment and the intermittent nature of resources are major challenges for large scale renewable generation. The size of photovoltaic (PV) and wind turbine (WT) farms in the microgrid needs optimized to avoid curtailment and to efficiently meet the demand of a power system. Battery energy storage systems (BESSs) may also be used to improve flexibility. This paper explores the optimal sizing for PV and wind generators, as well as a BESS at the utility level for a large grid-connected net zero energy (NZE) hybrid microgrid considering characteristics such as initial investment, levelized cost of energy (LCOE), operating costs, …


Optimal And Decentralized Control Strategies For Inverter-Based Ac Microgrids, Michael D. Cook, Eddy H. Trinklein, Gordon Parker, Rush D. Robinett Iii, Wayne Weaver Sep 2019

Optimal And Decentralized Control Strategies For Inverter-Based Ac Microgrids, Michael D. Cook, Eddy H. Trinklein, Gordon Parker, Rush D. Robinett Iii, Wayne Weaver

Michigan Tech Publications

This paper presents two control strategies: (i) An optimal exergy destruction (OXD) controller and (ii) a decentralized power apportionment (DPA) controller. The OXD controller is an analytical, closed-loop optimal feedforward controller developed utilizing exergy analysis to minimize exergy destruction in an AC inverter microgrid. The OXD controller requires a star or fully connected topology, whereas the DPA operates with no communication among the inverters. The DPA presents a viable alternative to conventional P−ω/Q−V droop control, and does not suffer from fluctuations in bus frequency or steady-state voltage while taking advantage of distributed storage assets necessary for the high penetration of …


Microgrid Renewable Energy Integration, Do Quang Thanh Vo Mar 2019

Microgrid Renewable Energy Integration, Do Quang Thanh Vo

Electrical Engineering

The Microgrid is a small-scale electrical system that is designed to give Cal Poly students hands-on experience on power generation, system protection, distribution, and automation that would otherwise be very difficult to experiment in a large-scale model.

To closely replicate the modern electrical grid, a renewable energy source shall be added to the Microgrid in conjunction with the existing synchronous generators. Electrical engineering student, Virginia Yan initiated this effort, namely Grid-Tied Solar System project [1], by designing and constructing a set of solar panels and microinverter for future connection to the Microgrid. The scope of Virginia’s project was, however, limited …


Energy Management And Control Of Smart Power Distribution Systems, Eric Galvan Jan 2019

Energy Management And Control Of Smart Power Distribution Systems, Eric Galvan

Open Access Theses & Dissertations

With the development of distributed energy resources (DERs) and advancements in technology, microgrids (MGs) appear primed to become an even more integral part of the future distribution grid. In this transition to the smart power grid of the future, MGs must be properly managed and controlled to allow efficient integration of DERs. Over the past years, there has been rapid adoption of roof-top solar photovoltaic (PV) and battery electric vehicles (BEVs). Although roof-top solar PV and BEVs can provide environmental benefits (e.g., reduction of emissions), they also create various challenges for power system operators. For example, roof-top solar PV generation …


Control Strategy For A Small-Scale Microgrid Based On Battery Energy Storage System-Virtual Synchronous Generator (Bess-Vsg), Wei Gao Jan 2019

Control Strategy For A Small-Scale Microgrid Based On Battery Energy Storage System-Virtual Synchronous Generator (Bess-Vsg), Wei Gao

Electronic Theses and Dissertations

As one of widely deployed renewable energy resources, PV power is playing a very important role in microgrids today. It has advantages such as making the best of natural solar energy and being friendly to our environment. In this thesis, solar PV based microgrid is studied using modeling and simulation. Microgrid can run in either grid-connected-mode or islanded-mode. However, there are also some disadvantages for solar power. For solar panel, its output is influenced by weather conditions such as illumination intensity and temperature. In addition, during the control process of grid-connected mode, it is hard to guarantee its output power …