Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Effects Of Graphene On Electrochemical Behaviors Of Ni(Oh)2 As Supercapacitor Material, Zhen-Zhen Zhao, Wen-Bin Ni, Neng-Yue Gao, Hong-Bo Wang, Jian-Wei Zhao Aug 2011

Effects Of Graphene On Electrochemical Behaviors Of Ni(Oh)2 As Supercapacitor Material, Zhen-Zhen Zhao, Wen-Bin Ni, Neng-Yue Gao, Hong-Bo Wang, Jian-Wei Zhao

Journal of Electrochemistry

The enhanced electrochemical properties of Ni(OH)2 by the oxidation defected graphene were studied by both experimental method and theoretical calculation. The composite material of nano-Ni(OH)2/graphene was prepared by potentiostatic deposition on the graphene substrate. Observed by TEM, the Ni(OH)2 nanoparticles were well dispersed on the graphene substrate with the diameter of 5.0±0.5 nm. The capacitance of the system measured by the electrochemical test was 1928 F?g-1. As indicated by the theoretical calculations, the composite material becomes conductive since Ni(OH)2 is combined with surface functional groups of the graphene through the strong chemical interaction. The electrons transfer from the graphene substrate …


Direct Measurement Of Graphene Adhesion On Silicon Surface By Intercalation Of Nanoparticles, Zong Zong, Chia-Ling Chen, Mehmet R. Dokmeci, Kai-Tak Wan Jun 2011

Direct Measurement Of Graphene Adhesion On Silicon Surface By Intercalation Of Nanoparticles, Zong Zong, Chia-Ling Chen, Mehmet R. Dokmeci, Kai-Tak Wan

Kai-tak Wan

We report a technique to characterize adhesion of monolayered/multilayered graphene sheets on silicon wafer. Nanoparticles trapped at graphene-silicon interface act as point wedges to support axisymmetric blisters. Local adhesion strength is found by measuring the particle height and blister radius using a scanning electron microscope. Adhesion energy of the typical graphene-silicon interface is measured to be 151±28 mJ/m2. The proposed method and our measurements provide insights in fabrication and reliability of microelectromechanical/nanoelectromechanical systems.


Direct Measurement Of Graphene Adhesion On Silicon Surface By Intercalation Of Nanoparticles, Zong Zong, Chia-Ling Chen, Mehmet Dokmeci, Kai-Tak Wan Jun 2011

Direct Measurement Of Graphene Adhesion On Silicon Surface By Intercalation Of Nanoparticles, Zong Zong, Chia-Ling Chen, Mehmet Dokmeci, Kai-Tak Wan

Mehmet R. Dokmeci

We report a technique to characterize adhesion of monolayered/multilayered graphene sheets on silicon wafer. Nanoparticles trapped at graphene-silicon interface act as point wedges to support axisymmetric blisters. Local adhesion strength is found by measuring the particle height and blister radius using a scanning electron microscope. Adhesion energy of the typical graphene-silicon interface is measured to be 151±28 mJ/m2. The proposed method and our measurements provide insights in fabrication and reliability of microelectromechanical/nanoelectromechanical systems.


Detection Of Acute Promyelocytic Leukemia Pml/Rarî± Fusion Gene Using Graphene Modified Glassy Carbon Electrode, Zhi-Xian Lian, Guang-Xian Zhong, Kun Wang, Ai-Lin Liu, Xin-Hua Lin, Yuan-Zhong Chen May 2011

Detection Of Acute Promyelocytic Leukemia Pml/Rarî± Fusion Gene Using Graphene Modified Glassy Carbon Electrode, Zhi-Xian Lian, Guang-Xian Zhong, Kun Wang, Ai-Lin Liu, Xin-Hua Lin, Yuan-Zhong Chen

Journal of Electrochemistry

A graphene modified glassy carbon electrode (GCE) was prepared by electrochemical reduction of graphite oxide fixed on the surface of GCE. Then, the amino-group modified probe of acute promyelocytic leukemia (APL) PML/RARα fusion gene fragment was immobilized onto surface of the graphene modified GCE by coupling activating agent. With methylene blue (MB) as a novel electrochemical indicator, artificial APL PML/RARα fusion gene fragment was measured by differential pulse voltammetry (DPV). The result indicated graphene nanomaterial showed good sensitization on the signal of MB. The relationship between the reduction peak current of MB and the concentration of complementary strand was linear …


Graphene Based Rf/Microwave Impedance Sensing And Low Loss Conductor For Rf Applications, Iramnaaz Iramnaaz Jan 2011

Graphene Based Rf/Microwave Impedance Sensing And Low Loss Conductor For Rf Applications, Iramnaaz Iramnaaz

Browse all Theses and Dissertations

Biosensors are becoming more popular recently and expanding due to their broad applications in detecting disease and infectious agents, monitoring of environmental toxins, etc. Recognition and quantification of biochemical molecules and molecular interactions present great challenges in biosensing [38]. Impedance sensing at radio frequency (RF) /microwave frequency becomes very attractive as bio-molecules exhibits large distinct dielectric properties, and also because the ionic conductivity of water in most physiological systems is greatly diminished. For example, it has been reported that tumoral cells exhibits large value of electrical conductivity and permittivity which can result in significant variation of the impedance when compared …