Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

A Genetic Algorithms Approach To Non-Coding Rna Gene Searches, Jennifer A. Smith Jul 2006

A Genetic Algorithms Approach To Non-Coding Rna Gene Searches, Jennifer A. Smith

Electrical and Computer Engineering Faculty Publications and Presentations

A genetic algorithm is proposed as an alternative to the traditional linear programming method for scoring covariance models in non-coding RNA (ncRNA) gene searches. The standard method is guaranteed to find the best score, but it is too slow for general use. The observation that most of the search space investigated by the linear programming method does not even remotely resemble any observed sequence in real sequence data can be used to motivate the use of genetic algorithms (GAs) to quickly reject regions of the search space. A search space with many local minima makes gradient decent an unattractive alternative. …


A Platform For Antenna Optimization With Numerical Electromagnetics Code Incorporated With Genetic Algorithms, Timothy L. Pitzer Mar 2006

A Platform For Antenna Optimization With Numerical Electromagnetics Code Incorporated With Genetic Algorithms, Timothy L. Pitzer

Theses and Dissertations

This thesis investigation presents a unique incorporation of the Method of Moments (MoM) with a Genetic Algorithm (GA). A GA is used in accord with the Numerical Electromagnetics Code, Version 4 (NEC4) to create and optimize typical wire antenna designs, including single elements and arrays. Design parameters for the antenna are defined and encoded into a chromosome composed of a series of numbers. The cost function associated with the specific antenna of interest is what quantifies improvement and, eventually, optimization. This cost function is created and used by the GA to evaluate the performance of a population of antenna designs. …


Ternary Quantum Logic, Normen Giesecke Jan 2006

Ternary Quantum Logic, Normen Giesecke

Dissertations and Theses

The application of Moore's Law would not be feasible by using the computing systems fabrication principles that are prevalent today. Fundamental changes in the field of computing are needed to keep Moore's Law operational. Different quantum technologies are available to take the advancement of computing into the future. Logic in quantum technology uses gates that are very different from those used in contemporary technology. Limiting itself to reversible operations, this thesis presents different methods to realize these logic gates. Two methods using Generalized Ternary Gates and Muthukrishnan Stroud Gates are presented for synthesis of ternary logic gates. Realizations of well-known …