Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Theses/Dissertations

Deep Learning

Institution
Publication Year
Publication

Articles 1 - 30 of 66

Full-Text Articles in Engineering

Neural Networks For Improved Signal Source Enumeration And Localization With Unsteered Antenna Arrays, John T. Rogers Ii Dec 2023

Neural Networks For Improved Signal Source Enumeration And Localization With Unsteered Antenna Arrays, John T. Rogers Ii

Theses and Dissertations

Direction of Arrival estimation using unsteered antenna arrays, unlike mechanically scanned or phased arrays, requires complex algorithms which perform poorly with small aperture arrays or without a large number of observations, or snapshots. In general, these algorithms compute a sample covriance matrix to obtain the direction of arrival and some require a prior estimate of the number of signal sources. Herein, artificial neural network architectures are proposed which demonstrate improved estimation of the number of signal sources, the true signal covariance matrix, and the direction of arrival. The proposed number of source estimation network demonstrates robust performance in the case …


Generalizable Deep-Learning-Based Wireless Indoor Localization, Ali Owfi Aug 2023

Generalizable Deep-Learning-Based Wireless Indoor Localization, Ali Owfi

All Theses

The growing interest in indoor localization has been driven by its wide range of applications in areas such as smart homes, industrial automation, and healthcare. With the increasing reliance on wireless devices for location-based services, accurate estimation of device positions within indoor environments has become crucial. Deep learning approaches have shown promise in leveraging wireless parameters like Channel State Information (CSI) and Received Signal Strength Indicator (RSSI) to achieve precise localization. However, despite their success in achieving high accuracy, these deep learning models suffer from limited generalizability, making them unsuitable for deployment in new or dynamic environments without retraining. To …


An Automated, Deep Learning Approach To Systematically & Sequentially Derive Three-Dimensional Knee Kinematics Directly From Two-Dimensional Fluoroscopic Video, Viet Dung Nguyen Aug 2023

An Automated, Deep Learning Approach To Systematically & Sequentially Derive Three-Dimensional Knee Kinematics Directly From Two-Dimensional Fluoroscopic Video, Viet Dung Nguyen

Doctoral Dissertations

Total knee arthroplasty (TKA), also known as total knee replacement, is a surgical procedure to replace damaged parts of the knee joint with artificial components. It aims to relieve pain and improve knee function. TKA can improve knee kinematics and reduce pain, but it may also cause altered joint mechanics and complications. Proper patient selection, implant design, and surgical technique are important for successful outcomes. Kinematics analysis plays a vital role in TKA by evaluating knee joint movement and mechanics. It helps assess surgery success, guides implant and technique selection, informs implant design improvements, detects problems early, and improves patient …


Deep Face Morph Detection Based On Wavelet Decomposition, Poorya Aghdaie Jan 2023

Deep Face Morph Detection Based On Wavelet Decomposition, Poorya Aghdaie

Graduate Theses, Dissertations, and Problem Reports

Morphed face images are maliciously used by criminals to circumvent the official process for receiving a passport where a look-alike accomplice embarks on requesting a passport. Morphed images are either synthesized by alpha-blending or generative networks such as Generative Adversarial Networks (GAN). Detecting morphed images is one of the fundamental problems associated with border control scenarios. Deep Neural Networks (DNN) have emerged as a promising solution for a myriad of applications such as face recognition, face verification, fake image detection, and so forth. The Biometrics communities have leveraged DNN to tackle fundamental problems such as morphed face detection. In this …


Establishing The Foundation To Robotize Complex Welding Processes Through Learning From Human Welders Based On Deep Learning Techniques, Rui Yu Jan 2023

Establishing The Foundation To Robotize Complex Welding Processes Through Learning From Human Welders Based On Deep Learning Techniques, Rui Yu

Theses and Dissertations--Electrical and Computer Engineering

As the demand for customized, efficient, and high-quality production increases, traditional manufacturing processes are transforming into smart manufacturing with the aid of advancements in information technology, such as cyber-physical systems (CPS), the Internet of Things (IoT), big data, and artificial intelligence (AI). The key requirement for integration with these advanced information technologies is to digitize manufacturing processes to enable analysis, control, and interaction with other digitized components. The integration of deep learning algorithm and massive industrial data will be critical components in realizing this process, leading to enhanced manufacturing in the Future of Work at the Human-Technology Frontier (FW-HTF).

This …


Optimized Learning Using Fuzzy-Inference-Assisted Algorithms For Deep Learning, Miroslava Barua Dec 2022

Optimized Learning Using Fuzzy-Inference-Assisted Algorithms For Deep Learning, Miroslava Barua

Open Access Theses & Dissertations

For years, researchers in Artificial Intelligence (AI) and Deep Learning (DL) observed that performance of a Deep Learning Network (DLN) could be improved by using larger and larger datasets coupled with complex network architectures. Although these strategies yield remarkable results, they have limits, dictated by data quantity and quality, rising costs by the increased computational power, or, more frequently, by long training times on networks that are very large. Training DLN requires laborious work involving multiple layers of densely connected neurons, updates to millions of network parameters, while potentially iterating thousands of times through millions of entries in a big …


Remote Human Vital Sign Monitoring Using Multiple-Input Multiple-Output Radar At Millimeter-Wave Frequencies, Toan Khanh Vo Dai Aug 2022

Remote Human Vital Sign Monitoring Using Multiple-Input Multiple-Output Radar At Millimeter-Wave Frequencies, Toan Khanh Vo Dai

Doctoral Dissertations

Non-contact respiration rate (RR) and heart rate (HR) monitoring using millimeter-wave (mmWave) radars has gained lots of attention for medical, civilian, and military applications. These mmWave radars are small, light, and portable which can be deployed to various places. To increase the accuracy of RR and HR detection, distributed multi-input multi-output (MIMO) radar can be used to acquire non-redundant information of vital sign signals from different perspectives because each MIMO channel has different fields of view with respect to the subject under test (SUT). This dissertation investigates the use of a Frequency Modulated Continuous Wave (FMCW) radar operating at 77-81 …


Deep Learning Based Localization Of Zigbee Interference Sources Using Channel State Information, Dylan Kensler Aug 2022

Deep Learning Based Localization Of Zigbee Interference Sources Using Channel State Information, Dylan Kensler

All Theses

As the field of Internet of Things (IoT) continues to grow, a variety of wireless signals fill the ambient wireless environment. These signals are used for communication, however, recently wireless sensing has been studied, in which these signals can be used to gather information about the surrounding space. With the development of 802.11n, a newer standard of WiFi, more complex information is available about the environment a signal propagates through. This information called Channel State Information (CSI) can be used in wireless sensing. With the help of Deep Learning, this work attempts to generate a fingerprinting technique for localizing a …


Applied Deep Learning: Case Studies In Computer Vision And Natural Language Processing, Md Reshad Ul Hoque Aug 2022

Applied Deep Learning: Case Studies In Computer Vision And Natural Language Processing, Md Reshad Ul Hoque

Electrical & Computer Engineering Theses & Dissertations

Deep learning has proved to be successful for many computer vision and natural language processing applications. In this dissertation, three studies have been conducted to show the efficacy of deep learning models for computer vision and natural language processing. In the first study, an efficient deep learning model was proposed for seagrass scar detection in multispectral images which produced robust, accurate scars mappings. In the second study, an arithmetic deep learning model was developed to fuse multi-spectral images collected at different times with different resolutions to generate high-resolution images for downstream tasks including change detection, object detection, and land cover …


Machine Learning Applications In Plant Identification, Wireless Channel Estimation, And Gain Estimation For Multi-User Software-Defined Radio, Viraj K. Gajjar Aug 2022

Machine Learning Applications In Plant Identification, Wireless Channel Estimation, And Gain Estimation For Multi-User Software-Defined Radio, Viraj K. Gajjar

Doctoral Dissertations

"This work applies machine learning (ML) techniques to selected computer vision and digital communication problems. Machine learning algorithms can be trained to perform a specific task without explicit programming. This research applies ML to the problems of: plant identification from images of leaves, channel state information (CSI) estimation for wireless multiple-input-multiple-output (MIMO) systems, and gain estimation for a multi-user software-defined radio (SDR) application.

In the first task, two methods for plant species identification from leaf images are developed. One of the methods uses hand-crafted features extracted from leaf images to train a support vector machine classifier. The other method combines …


Detection Of Rotorcraft Landing Sites: An Ai-Based Approach, Abdullah Nasir Jul 2022

Detection Of Rotorcraft Landing Sites: An Ai-Based Approach, Abdullah Nasir

Theses and Dissertations

The updated information about the location and type of rotorcraft landing sites is an essential asset for the Federal Aviation Administration (FAA) and the Department of Transportation (DOT). However, acquiring, verifying, and regularly updating information about landing sites is not straightforward. The lack of current and correct information about landing sites is a risk factor in several rotorcraft accidents and incidents. The current FAA database of rotorcraft landing sites contains inaccurate and missing entries due to the manual updating process. There is a need for an accurate and automated validation tool to identify landing sites from satellite imagery. This thesis …


Machine Learning With Big Data For Electrical Load Forecasting, Alexandra L'Heureux Jun 2022

Machine Learning With Big Data For Electrical Load Forecasting, Alexandra L'Heureux

Electronic Thesis and Dissertation Repository

Today, the amount of data collected is exploding at an unprecedented rate due to developments in Web technologies, social media, mobile and sensing devices and the internet of things (IoT). Data is gathered in every aspect of our lives: from financial information to smart home devices and everything in between. The driving force behind these extensive data collections is the promise of increased knowledge. Therefore, the potential of Big Data relies on our ability to extract value from these massive data sets. Machine learning is central to this quest because of its ability to learn from data and provide data-driven …


Machine Learning Applications To Static Timing Analysis, Waseem Mohamed Raslan Jun 2022

Machine Learning Applications To Static Timing Analysis, Waseem Mohamed Raslan

Theses and Dissertations

Modeling complex cell behavior is critical for accurate static timing analysis. Effective current source model, ECSM, and composite current source, CCS, waveform data compression became a necessity to reduce the size of technology files and increase the accuracy of the cell characterization data. We used deep learning nonlinear Autoencoders to compress voltage and current waveforms and compared them with singular value decomposition, SVD, approach. Autoencoders gave ~1.67x compression ratio for voltage waveforms better than SVD approach and gave 45x to 55x better compression ratio compared to other lossless techniques like bz2 and gzip. Autoencoders achieved ~1.7x compression ratio for complex …


Neural Network Based Diagnosis Of Breast Cancer Using The Breakhis Dataset, Ross E. Dalke Jun 2022

Neural Network Based Diagnosis Of Breast Cancer Using The Breakhis Dataset, Ross E. Dalke

Master's Theses

Breast cancer is the most common type of cancer in the world, and it is the second deadliest cancer for females. In the fight against breast cancer, early detection plays a large role in saving people’s lives. In this work, an image classifier is designed to diagnose breast tumors as benign or malignant. The classifier is designed with a neural network and trained on the BreakHis dataset. After creating the initial design, a variety of methods are used to try to improve the performance of the classifier. These methods include preprocessing, increasing the number of training epochs, changing network architecture, …


Deep Learning For Load Forecasting With Smart Meter Data: Online And Federated Learning, Mohammad Navid Fekri Apr 2022

Deep Learning For Load Forecasting With Smart Meter Data: Online And Federated Learning, Mohammad Navid Fekri

Electronic Thesis and Dissertation Repository

Electricity load forecasting has been attracting increasing attention because of its importance for energy management, infrastructure planning, and budgeting. In recent years, the proliferation of smart meters has created new opportunities for forecasting on the building and even individual household levels. Machine learning (ML) has achieved great successes in this domain; however, conventional ML techniques require data transfer to a centralized location for model training, therefore, increasing network traffic and exposing data to privacy and security risks. Also, traditional approaches employ offline learning, which means that they are only trained once and miss out on the possibility to learn from …


Remote Crop Disease Detection Using Deep Learning With Iot, Ivy Chung, Anoushka Gupta Apr 2022

Remote Crop Disease Detection Using Deep Learning With Iot, Ivy Chung, Anoushka Gupta

Electrical and Computer Engineering Senior Theses

Agriculture is such a vital part of our society, and according to the United Nations’ Food and Agricultural Organization (FAO), plant diseases are considered one of the two main causes of decreasing food availability. This paper explores not only the methods and findings of building a CNN-based disease detection model, but that of building a deployable remote crop disease detection system incorporating IoT technology. By using transfer learning with AlexNet, we were able to predict with 89.8% accuracy tomato plant images into one of the ten pre-defined disease classes. Our proposed system tracks plant health throughout the day by using …


The Role Of Transient Vibration Of The Skull On Concussion, Rodrigo Dalvit Carvalho Da Silva Mar 2022

The Role Of Transient Vibration Of The Skull On Concussion, Rodrigo Dalvit Carvalho Da Silva

Electronic Thesis and Dissertation Repository

Concussion is a traumatic brain injury usually caused by a direct or indirect blow to the head that affects brain function. The maximum mechanical impedance of the brain tissue occurs at 450±50 Hz and may be affected by the skull resonant frequencies. After an impact to the head, vibration resonance of the skull damages the underlying cortex. The skull deforms and vibrates, like a bell for 3 to 5 milliseconds, bruising the cortex. Furthermore, the deceleration forces the frontal and temporal cortex against the skull, eliminating a layer of cerebrospinal fluid. When the skull vibrates, the force spreads directly to …


Investigation Of Green Strawberry Detection Using R-Cnn With Various Architectures, Daniel W. Rivers Mar 2022

Investigation Of Green Strawberry Detection Using R-Cnn With Various Architectures, Daniel W. Rivers

Master's Theses

Traditional image processing solutions have been applied in the past to detect and count strawberries. These methods typically involve feature extraction followed by object detection using one or more features. Some object detection problems can be ambiguous as to what features are relevant and the solutions to many problems are only fully realized when the modern approach has been applied and tested, such as deep learning.

In this work, we investigate the use of R-CNN for green strawberry detection. The object detection involves finding regions of interest (ROIs) in field images using the selective segmentation algorithm and inputting these regions …


Smart City Management Using Machine Learning Techniques, Mostafa Zaman Jan 2022

Smart City Management Using Machine Learning Techniques, Mostafa Zaman

Theses and Dissertations

In response to the growing urban population, "smart cities" are designed to improve people's quality of life by implementing cutting-edge technologies. The concept of a "smart city" refers to an effort to enhance a city's residents' economic and environmental well-being via implementing a centralized management system. With the use of sensors and actuators, smart cities can collect massive amounts of data, which can improve people's quality of life and design cities' services. Although smart cities contain vast amounts of data, only a percentage is used due to the noise and variety of the data sources. Information and communication technology (ICT) …


An Analysis On Adversarial Machine Learning: Methods And Applications, Ali Dabouei Jan 2022

An Analysis On Adversarial Machine Learning: Methods And Applications, Ali Dabouei

Graduate Theses, Dissertations, and Problem Reports

Deep learning has witnessed astonishing advancement in the last decade and revolutionized many fields ranging from computer vision to natural language processing. A prominent field of research that enabled such achievements is adversarial learning, investigating the behavior and functionality of a learning model in presence of an adversary. Adversarial learning consists of two major trends. The first trend analyzes the susceptibility of machine learning models to manipulation in the decision-making process and aims to improve the robustness to such manipulations. The second trend exploits adversarial games between components of the model to enhance the learning process. This dissertation aims to …


Landmark Enforcement And Principal Component Analysis For Improving Gan-Based Morphing, Samuel W. Price Jan 2022

Landmark Enforcement And Principal Component Analysis For Improving Gan-Based Morphing, Samuel W. Price

Graduate Theses, Dissertations, and Problem Reports

Facial Recognition Systems (FRSs) are a key target for adversaries determined to circumvent security checkpoints. Morph images threaten FRS by presenting as multiple individuals, allowing an adversary to swap identities with another subject. Although morph generation using generative adversarial networks (GANs) results in high-quality morphs without possessing the spatial artifacts caused by landmarkbased methods, there is an apparent loss in identity with standard GAN-based morphing methods. In this thesis, we examine landmark-based and GAN-based morphing methods to fuse the advantages of both methodologies. We propose a novel StyleGAN2 morph generation technique by introducing a landmark enforcement method. Considering this method, …


Multimodal Adversarial Learning, Uche Osahor Jan 2022

Multimodal Adversarial Learning, Uche Osahor

Graduate Theses, Dissertations, and Problem Reports

Deep Convolutional Neural Networks (DCNN) have proven to be an exceptional tool for object recognition, generative modelling, and multi-modal learning in various computer vision applications. However, recent findings have shown that such state-of-the-art models can be easily deceived by inserting slight imperceptible perturbations to key pixels in the input. A good target detection systems can accurately identify targets by localizing their coordinates on the input image of interest. This is ideally achieved by labeling each pixel in an image as a background or a potential target pixel. However, prior research still confirms that such state of the art targets models …


License Plate Image Quality Enhancement Utilizing Super Resolution Generative Adversarial Networks, Mark Moelter Jan 2022

License Plate Image Quality Enhancement Utilizing Super Resolution Generative Adversarial Networks, Mark Moelter

Electronic Theses and Dissertations

This thesis focuses primarily on enhancing the image quality of blurred license plates through the use of Super-Resolution Generative Adversarial Networks (SRGANs) [1]. We propose a synthetic dataset with SRGAN model to promote blurred image quality enhancement, and allow for model evaluation on a multitude of image input and output size combinations. SRGAN is mainly used for low-resolution image enhancement, but by heavily blurring the input images, the model is tested on its ability to blindly deblur and upsample images to the desired super-resolution (SR) size. The model enhances the image quality to nearly that of the reference images. The …


A Deep Recurrent Neural Network With Iterative Optimization For Inverse Image Processing Applications, Masaki Ikuta Dec 2021

A Deep Recurrent Neural Network With Iterative Optimization For Inverse Image Processing Applications, Masaki Ikuta

Theses and Dissertations

Many algorithms and methods have been proposed for inverse image processing applications, such as super-resolution, image de-noising, and image reconstruction, particularly with the recent surge of interest in machine learning and deep learning methods.

As for Computed Tomography (CT) image reconstruction, the most recently proposed methods are limited to image domain processing, where deep learning is used to learn the mapping between a true image data set and a noisy image data set in the image domain. While deep learning-based methods can produce higher quality images than conventional model-based algorithms, these methods have a limitation. Deep learning-based methods used in …


Analysis Of Deep Learning Methods For Wired Ethernet Physical Layer Security Of Operational Technology, Lucas Torlay Dec 2021

Analysis Of Deep Learning Methods For Wired Ethernet Physical Layer Security Of Operational Technology, Lucas Torlay

All Theses

The cybersecurity of power systems is jeopardized by the threat of spoofing and man-in-the-middle style attacks due to a lack of physical layer device authentication techniques for operational technology (OT) communication networks. OT networks cannot support the active probing cybersecurity methods that are popular in information technology (IT) networks. Furthermore, both active and passive scanning techniques are susceptible to medium access control (MAC) address spoofing when operating at Layer 2 of the Open Systems Interconnection (OSI) model. This thesis aims to analyze the role of deep learning in passively authenticating Ethernet devices by their communication signals. This method operates at …


Machine Learning For Unmanned Aerial System (Uas) Networking, Jian Wang Dec 2021

Machine Learning For Unmanned Aerial System (Uas) Networking, Jian Wang

Doctoral Dissertations and Master's Theses

Fueled by the advancement of 5G new radio (5G NR), rapid development has occurred in many fields. Compared with the conventional approaches, beamforming and network slicing enable 5G NR to have ten times decrease in latency, connection density, and experienced throughput than 4G long term evolution (4G LTE). These advantages pave the way for the evolution of Cyber-physical Systems (CPS) on a large scale. The reduction of consumption, the advancement of control engineering, and the simplification of Unmanned Aircraft System (UAS) enable the UAS networking deployment on a large scale to become feasible. The UAS networking can finish multiple complex …


Evaluation Of Robust Deep Learning Pipelines Targeting Low Swap Edge Deployment, David Carter Cornett Dec 2021

Evaluation Of Robust Deep Learning Pipelines Targeting Low Swap Edge Deployment, David Carter Cornett

Masters Theses

The deep learning technique of convolutional neural networks (CNNs) has greatly advanced the state-of-the-art for computer vision tasks such as image classification and object detection. These solutions rely on large systems leveraging wattage-hungry GPUs to provide the computational power to achieve such performance. However, the size, weight and power (SWaP) requirements of these conventional GPU-based deep learning systems are not suitable when a solution requires deployment to so called "Edge" environments such as autonomous vehicles, unmanned aerial vehicles (UAVs) and smart security cameras.

The objective of this work is to benchmark FPGA-based alternatives to conventional GPU systems that have the …


Deep Learning For High-Impedance Fault Detection And Classification, Khushwant Rai Aug 2021

Deep Learning For High-Impedance Fault Detection And Classification, Khushwant Rai

Electronic Thesis and Dissertation Repository

High-Impedance Faults (HIFs) are a hazard to public safety but are difficult to detect because of their low current amplitude and diverse characteristics. Supervised machine learning techniques have shown great success in HIF detection; however, these approaches rely on resource-intensive signal processing techniques and fail in presence of non-HIF disturbances and even for scenarios not included in training data. This thesis leverages unsupervised learning and proposes a Convolutional Autoencoder framework for HIF Detection (CAE-HIFD). In CAE-HIFD, Convolutional Autoencoder learns only from HIF signals by employing cross-correlation; consequently, eliminating the need for diverse non-HIF scenarios in training. Furthermore, this thesis proposes …


Forecasting Pedestrian Trajectory Using Deep Learning, Arsal Syed Aug 2021

Forecasting Pedestrian Trajectory Using Deep Learning, Arsal Syed

UNLV Theses, Dissertations, Professional Papers, and Capstones

In this dissertation we develop different methods for forecasting pedestrian trajectories. Complete understanding of pedestrian motion is essential for autonomous agents and social robots to make realistic and safe decisions. Current trajectory prediction methods rely on incorporating historic motion, scene features and social interaction to model pedestrian behaviors. Our focus is to accurately understand scene semantics to better forecast trajectories. In order to do so, we leverage semantic segmentation to encode static scene features such as walkable paths, entry/exits, static obstacles etc. We further evaluate the effectiveness of using semantic maps on different datasets and compare its performance with already …


Hardware For Quantized Mixed-Precision Deep Neural Networks, Andres Rios Aug 2021

Hardware For Quantized Mixed-Precision Deep Neural Networks, Andres Rios

Open Access Theses & Dissertations

Recently, there has been a push to perform deep learning (DL) computations on the edge rather than the cloud due to latency, network connectivity, energy consumption, and privacy issues. However, state-of-the-art deep neural networks (DNNs) require vast amounts of computational power, data, and energyâ??resources that are limited on edge devices. This limitation has brought the need to design domain-specific architectures (DSAs) that implement DL-specific hardware optimizations. Traditionally DNNs have run on 32-bit floating-point numbers; however, a body of research has shown that DNNs are surprisingly robust and do not require all 32 bits. Instead, using quantization, networks can run on …