Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Series

2020

Additive manufacturing

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Parametric Nasopharyngeal Swab For Sampling Covid-19 And Other Respiratory Viruses: Open Source Design, Sla 3-D Printing And Uv Curing System, Nicole Gallup, Adam M. Pringle, Shane Oberloier, Nagendra G. Tanikella, Joshua M. Pearce Oct 2020

Parametric Nasopharyngeal Swab For Sampling Covid-19 And Other Respiratory Viruses: Open Source Design, Sla 3-D Printing And Uv Curing System, Nicole Gallup, Adam M. Pringle, Shane Oberloier, Nagendra G. Tanikella, Joshua M. Pearce

Michigan Tech Publications

Access to nasopharyngeal swabs for sampling remain a bottleneck in some regions for COVID-19 testing. This study develops a distributed manufacturing solution using only an open source manufacturing tool chain consisting of two types of open source 3-D printing and batch UV curing, and provides a parametric fully free design of a nasopharyngeal swab. The swab was designed using parametric OpenSCAD in two components (a head with engineered break point and various handles), which has several advantages: i) minimizing print time on relatively slow SLA printers, ii) enabling the use of smaller print volume open source SLA printers, iii) reducing …


Open Source Arc Analyzer: Multi-Sensor Monitoring Of Wire Arc Additive Manufacturing, Adam M. Pringle, Shane Oberloier, Aliaksei Petsiuk, Paul G. Sanders, Joshua M. Pearce Oct 2020

Open Source Arc Analyzer: Multi-Sensor Monitoring Of Wire Arc Additive Manufacturing, Adam M. Pringle, Shane Oberloier, Aliaksei Petsiuk, Paul G. Sanders, Joshua M. Pearce

Michigan Tech Publications

Low-cost high-resolution metal 3-D printing remains elusive for the scientific community. Low-cost gas metal arc wire (GMAW)-based 3-D printing enables wire arc additive manufacturing (WAAM) for near net shape applications, but has limited resolution due to the complexities of the arcing process. To begin to monitor and thus control these complexities, the initial designs of the open source GMAW 3-D printer have evolved to include current and voltage monitoring. Building on this prior work, in this study, the design, fabrication and use of the open source arc analyzer is described. The arc analyzer is a multi-sensor monitoring system for quantifying …


Open Source High-Temperature Reprap For 3-D Printing Heat-Sterilizable Ppe And Other Applications, Noah G. Skrzypczak, Nagendra G. Tanikella, Joshua M. Pearce Oct 2020

Open Source High-Temperature Reprap For 3-D Printing Heat-Sterilizable Ppe And Other Applications, Noah G. Skrzypczak, Nagendra G. Tanikella, Joshua M. Pearce

Michigan Tech Publications

Thermal sterilization is generally avoided for 3-D printed components because of the relatively low deformation temperatures for common thermoplastics used for material extrusion-based additive manufacturing. 3-D printing materials required for high-temperature heat sterilizable components for COVID-19 and other applications demands 3-D printers with heated beds, hot ends that can reach higher temperatures than polytetrafluoroethylene (PTFE) hot ends and heated chambers to avoid part warping and delamination. There are several high temperature printers on the market, but their high costs make them inaccessible for full home-based distributed manufacturing required during pandemic lockdowns. To allow for all these requirements to be met …


Towards Distributed Recycling With Additive Manufacturing Of Pet Flake Feedstocks, Helen A. Little, Nagendra Gautam Tanikella, Matthew J. Reich, Matthew J. Fiedler, Samantha L. Snabes, Joshua M. Pearce Sep 2020

Towards Distributed Recycling With Additive Manufacturing Of Pet Flake Feedstocks, Helen A. Little, Nagendra Gautam Tanikella, Matthew J. Reich, Matthew J. Fiedler, Samantha L. Snabes, Joshua M. Pearce

Michigan Tech Publications

This study explores the potential to reach a circular economy for post-consumer Recycled Polyethylene Terephthalate (rPET) packaging and bottles by using it as a Distributed Recycling for Additive Manufacturing (DRAM) feedstock. Specifically, for the first time, rPET water bottle flake is processed using only an open source toolchain with Fused Particle Fabrication (FPF) or Fused Granular Fabrication (FGF) processing rather than first converting it to filament. In this study, first the impact of granulation, sifting, and heating (and their sequential combination) is quantified on the shape and size distribution of the rPET flakes. Then 3D printing tests were performed on …


Plastic Recycling In Additive Manufacturing: A Systematic Literature Review And Opportunities For The Circular Economy, Fabio A. Cruz Sanchez, Hakim Boudaoud, Mauricio Camargo, Joshua M. Pearce Aug 2020

Plastic Recycling In Additive Manufacturing: A Systematic Literature Review And Opportunities For The Circular Economy, Fabio A. Cruz Sanchez, Hakim Boudaoud, Mauricio Camargo, Joshua M. Pearce

Michigan Tech Publications

The rapid technical evolution of additive manufacturing (AM) enables a new path to a circular economy using distributed recycling and production. This concept of Distributed Recycling via Additive Manufacturing (DRAM) is related to the use of recycled materials by means of mechanical recycling process in the 3D printing process chain. This paper aims to examine the current advances on thermoplastic recycling processes via additive manufacturing technologies. After proposing a closed recycling global chain for DRAM, a systematic literature review including 92 papers from 2009 to 2019 was performed using the scopus, web of science and springer databases. This work examines …


Open-Source Digitally Replicable Lab-Grade Scales, Benjamin R. Hubbard, Joshua M. Pearce Jun 2020

Open-Source Digitally Replicable Lab-Grade Scales, Benjamin R. Hubbard, Joshua M. Pearce

Michigan Tech Publications

This study provides designs for a low-cost, easily replicable open-source lab-grade digital scale that can be used as a precision balance. The design is such that it can be manufactured for use in most labs throughout the world with open-source RepRap-class material extrusion-based 3-D printers for the mechanical components and readily available open-source electronics including the Arduino Nano. Several versions of the design were fabricated and tested for precision and accuracy for a range of load cells. The results showed the open-source scale was found to be repeatable within 0.05 g with multiple load cells, with even better precision (0.005 …


Conversion Of Self-Contained Breathing Apparatus Mask To Open Source Powered Air-Purifying Particulate Respirator For Fire Fighter Covid-19 Response, Benjamin R. Hubbard, Joshua M. Pearce Jun 2020

Conversion Of Self-Contained Breathing Apparatus Mask To Open Source Powered Air-Purifying Particulate Respirator For Fire Fighter Covid-19 Response, Benjamin R. Hubbard, Joshua M. Pearce

Michigan Tech Publications

To assist firefighters and other first responders to use their existing equipment for respiration during the COVID-19 pandemic without using single-use, low-supply, masks, this study outlines an open source kit to convert a 3M-manufactured Scott Safety self-contained breathing apparatus (SCBA) into a powered air-purifying particulate respirator (PAPR). The open source PAPR can be fabricated with a low-cost 3-D printer and widely available components for less than $150, replacing commercial conversion kits saving 85% or full-fledged proprietary PAPRs saving over 90%. The parametric designs allow for adaptation to other core components and can be custom fit specifically to fire-fighter equipment, including …


Open Source High-Temperature Reprap For 3-D Printing Heat-Sterilizable Ppe And Other Applications, Noah G. Skrzypczak, Nagendra Gautam Tanikella, Joshua M. Pearce May 2020

Open Source High-Temperature Reprap For 3-D Printing Heat-Sterilizable Ppe And Other Applications, Noah G. Skrzypczak, Nagendra Gautam Tanikella, Joshua M. Pearce

Michigan Tech Publications

Thermal sterilization is generally avoided for 3-D printed components because of the relatively low deformation temperatures for common thermoplastics used for material extrusion-based additive manufacturing. 3-D printing materials required for high-temperature heat sterilizable components for COVID-19 and other applications demands 3-D printers with heated beds, hot ends that can reach higher temperatures than polytetrafluoroethylene (PTFE) hot ends and heated chambers to avoid part warping and delamination. There are several high temperature printers on the market, but their high costs make them inaccessible for full home-based distributed manufacturing required during pandemic lockdowns. To allow for all these requirements to be met …


Design Of Versatile Feedback Control System Components For Selective Laser Sintering, Thomas Chessman May 2020

Design Of Versatile Feedback Control System Components For Selective Laser Sintering, Thomas Chessman

University Scholar Projects

Selective laser sintering (SLS) is an additive manufacturing technique that involves using a laser to fuse powdered material together, layer by layer, in order to create a 3-D product. Despite its numerous benefits over traditional methods of manufacturing, including higher efficiency, versatility, and the ability to process many materials, selective laser sintering suffers from its propensity to generate structural errors during operation.

Feedback control has been shown to improve fabrication quality in other laser-based additive manufacturing techniques when implemented properly. Widespread exploration of applying feedback control in SLS might lead to significant performance improvements in this form of manufacturing.

This …


Parametric Nasopharyngeal Swab For Sampling Covid-19 And Other Respiratory Viruses: Open Source Design, Sla 3-D Printing And Uv Curing System, Nicole Gallup, Adam Pringle, Shane Oberloier, Nagendra Gautam Tanikella, Joshua M. Pearce May 2020

Parametric Nasopharyngeal Swab For Sampling Covid-19 And Other Respiratory Viruses: Open Source Design, Sla 3-D Printing And Uv Curing System, Nicole Gallup, Adam Pringle, Shane Oberloier, Nagendra Gautam Tanikella, Joshua M. Pearce

Michigan Tech Publications

Access to nasopharyngeal swabs for sampling remain a bottleneck in some regions for COVID19 testing. This study develops a distributed manufacturing solution using only an open source manufacturing tool chain consisting of two types of open source 3-D printing and batch UV curing, and provides a parametric fully free design of a nasopharyngeal swab. The swab was designed using parametric OpenSCAD in two components (a head with engineered break point and various handles), which has several advantages: i) minimizing print time on relatively slow SLA printers, ii) enabling the use of smaller print volume open source SLA printers, iii) reducing …