Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Electrochemical Advanced Treatment Of Desulfurization Wastewater From Coal-Fired Power Plants, Ju-Cai Wei, Juan Yi, Xu Wu Apr 2024

Electrochemical Advanced Treatment Of Desulfurization Wastewater From Coal-Fired Power Plants, Ju-Cai Wei, Juan Yi, Xu Wu

Journal of Electrochemistry

Zero-emission of desulfurization wastewater is one of the main demands for coal-fired power plants. As typical high salinity wastewater, it is hard to purify the desulfurization wastewater from coal-fired power plants through traditional physicochemical treatment or biochemical treatment, e.g., COD and Cl. A high concentration of Cl ion in desulfurization wastewater restricts wastewater reuse and zero-emission. Electrochemical technology is an attractive method for high salinity wastewater zero-emission, which provides a versatile, efficient, cost-effective, easily automatable, and clean industrial process. For advanced treatment of effluent after triple box process treatment in power plants, this paper reports an electrochemical …


Recent Advances In Solar Photo(Electro)Catalytic Nitrogen Fixation, Jun-Bo Ma, Sheng Lin, Zhiqun Lin, Lan Sun, Chang-Jian Lin Mar 2024

Recent Advances In Solar Photo(Electro)Catalytic Nitrogen Fixation, Jun-Bo Ma, Sheng Lin, Zhiqun Lin, Lan Sun, Chang-Jian Lin

Journal of Electrochemistry

Ammonia (NH3) is an essential chemical in modern society. It is currently produced in industry by the Haber-Bosch process using H2 and N2 as reactants in the presence of iron-based catalysts at high-temperature (400–600 oC) and extremely highpressure (20–40 MPa) conditions. However, its efficiency is limited to 10% to 15%. At the same time, a large amount of energy is consumed, and CO2 emission is inevitably. The development of a sustainable, clean, and environmentally friendly energy system represents a key strategy to address energy crisis and environmental pollution, ultimately aiming to achieve carbon neutrality. …


The Determination Of Pzc And Differential Capacitance Curve Of Platinum-Alkaline Polymer Electrolyte Interfaces, Chen-Xi Liu, Ze-Ping Zou, Mei-Xue Hu, Yu Ding, Yu Gu, Shuai Liu, Wen-Jing Nan, Yi-Chang Ma, Zhao-Bin Chen, Dong-Ping Zhan, Qiu-Gen Zhang, Lin Zhuang, Jia-Wei Yan, Bing-Wei Mao Mar 2024

The Determination Of Pzc And Differential Capacitance Curve Of Platinum-Alkaline Polymer Electrolyte Interfaces, Chen-Xi Liu, Ze-Ping Zou, Mei-Xue Hu, Yu Ding, Yu Gu, Shuai Liu, Wen-Jing Nan, Yi-Chang Ma, Zhao-Bin Chen, Dong-Ping Zhan, Qiu-Gen Zhang, Lin Zhuang, Jia-Wei Yan, Bing-Wei Mao

Journal of Electrochemistry

Alkaline polymer electrolyte (APE) is the core component of modern alkaline hydrogen and oxygen fuel cells, and its single ion conductor nature makes the "electrode/APE" interfaces different from the conventional "electrode/solution" interfaces in terms of ion distribution, electrical double layer structure and polarization behavior. Due to the complexity of the APE and the associated solid-solid interfaces, fundamental investigations are challenging and deeper understanding of the structures and properties of such interfaces is in the infant stage. In this work, we aim to investigate the double layer structure from the aspects of differential capacitance curve and potential of zero charge (PZC) …


Automated Workflow For Redox Potentials And Acidity Constants Calculations From Machine Learning Molecular Dynamics, Feng Wang, Jun Cheng Feb 2024

Automated Workflow For Redox Potentials And Acidity Constants Calculations From Machine Learning Molecular Dynamics, Feng Wang, Jun Cheng

Journal of Electrochemistry

Redox potentials and acidity constants are key properties for evaluating the performance of energy materials. To achieve computational design of new generation of energy materials with higher performances, computing redox potentials and acidity constants with computational chemistry have attracted lots of attention. However, many works are done by using implicit solvation models, which is difficult to be applied to complex solvation environments due to hard parameterization. Recently, ab initio molecular dynamics (AIMD) has been applied to investigate real electrolytes with complex solvation. Furthermore, AIMD based free energy calculation methods have been established to calculate these physical chemical properties accurately. However, …


Joint Time-Frequency Analysis: Taking Charge Penetration Depth And Current Spatial Distribution In The Single Pore As An Example, Nan Wang, Qiu-An Huang, Wei-Heng Li, Yu-Xuan Bai, Jiu-Jun Zhang Feb 2024

Joint Time-Frequency Analysis: Taking Charge Penetration Depth And Current Spatial Distribution In The Single Pore As An Example, Nan Wang, Qiu-An Huang, Wei-Heng Li, Yu-Xuan Bai, Jiu-Jun Zhang

Journal of Electrochemistry

In recent years, joint time-frequency analysis has once again become a research hotspot. Supercapacitors have high power density and long service life, however, in order to balance between power density and energy density, two key factors need to be considered: (i) the specific surface area of the porous matrix; (ii) the electrolyte accessibility to the intra-pore space of porous carbon matrix. Electrochemical impedance spectra are extensively used to investigate charge penetration ratio and charge storage mechanism in the porous electrode for capacitance energy storage. Furthermore, similar results could be obtained by different methods such as stable-state analysis in the frequency …


Confirmation Of Anomalous-Heat Report, Steven B. Krivit, Melvin H. Miles Feb 2024

Confirmation Of Anomalous-Heat Report, Steven B. Krivit, Melvin H. Miles

Journal of Electrochemistry

This study identifies, for the first time, critical calculation errors made by Nathan Lewis and his co-authors, in their study presented on May 1, 1989, at the American Physical Society meeting in Baltimore, Maryland. Lewis et al. analysed calorimetrically measured heat results in nine experiments reported by Martin Fleischmann and his co-authors. According to the Lewis et al. analysis, each of the experiments, where calculated for no recombination, showed anomalous power losses. When we used the same raw data, our corrected calculations indicate that each experiment showed anomalous power gains. As such, these data suggest the possibility of a new, …


The Top Ten Scientific Questions In Electrochemistry, Chinese Society Of Electrochemistry Jan 2024

The Top Ten Scientific Questions In Electrochemistry, Chinese Society Of Electrochemistry

Journal of Electrochemistry

No abstract provided.


Stability Of A Solid Oxide Cell Stack Under Direct Internal-Reforming Of Hydrogen-Blended Methane, Ya-Fei Tang, An-Qi Wu, Bei-Bei Han, Hua Liu, Shan-Jun Bao, Wang-Lin Lin, Ming Chen, Wan-Bing Guan, Subhash C. Singhal Jan 2024

Stability Of A Solid Oxide Cell Stack Under Direct Internal-Reforming Of Hydrogen-Blended Methane, Ya-Fei Tang, An-Qi Wu, Bei-Bei Han, Hua Liu, Shan-Jun Bao, Wang-Lin Lin, Ming Chen, Wan-Bing Guan, Subhash C. Singhal

Journal of Electrochemistry

In this work, the long-term stability and degradation mechanism of a direct internal-reforming solid oxide fuel cell stack (IR-SOFC stack) using hydrogen-blended methane steam reforming were investigated. An overall degradation rate of 2.3%·kh–1 was found after the stack was operated for 3000 hours, indicating a good long-term stability. However, the voltages of the two cells in the stack were increased at the rates of 3.38 mV·kh–1 and 3.78 mV·kh–1, while the area specific resistances of the three metal interconnects in the stack were increased to 0.276 Ω·cm2, 0.254 Ω·cm2 and 0.249 Ω·cm2 …


Rational Design Of Heterostructured Nanomaterials For Accelerating Electrocatalytic Hydrogen Evolution Reaction Kinetics In Alkaline Media, Hai-Bin Ma, Xiao-Yan Zhou, Jia-Yi Li, Hong-Fei Cheng, Ji-Wei Ma Jan 2024

Rational Design Of Heterostructured Nanomaterials For Accelerating Electrocatalytic Hydrogen Evolution Reaction Kinetics In Alkaline Media, Hai-Bin Ma, Xiao-Yan Zhou, Jia-Yi Li, Hong-Fei Cheng, Ji-Wei Ma

Journal of Electrochemistry

Owing to the merits of high energy density, as well as clean and sustainable properties, hydrogen has been deemed to be a prominent alternative energy to traditional fossil fuels. Electrocatalytic hydrogen evolution reaction (HER) has been considered to be mostly promising for achieving green hydrogen production, and has been widely studied in acidic and alkaline solutions. In particular, HER in alkaline media has high potential to achieve large-scale hydrogen production because of the increased durability of electrode materials. However, for the currently most prominent catalyst Pt, its HER kinetics in an alkaline solution is generally 2–3 orders lower than that …