Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Journal of Electrochemistry

2016

Electrochemistry

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Synthesis, Structural Diversity, And Redox Control Of Cyclometalated Monoruthenium Complexes, Zhong-Liang Gong, Jiang-Yang Shao, Zhong Yu-Wu Jun 2016

Synthesis, Structural Diversity, And Redox Control Of Cyclometalated Monoruthenium Complexes, Zhong-Liang Gong, Jiang-Yang Shao, Zhong Yu-Wu

Journal of Electrochemistry

Cyclometalated ruthenium complexes have received increasing attractions recently due to their excellent redox and photophysical properties. One structural feature of these complexes is that there is a ruthenium-carbon (Ru-C) σ bond presented in the molecule. Three common methods, namely, the “late metalation”, “early metalation”, and “transmetalation” methods, for the synthesis of cyclometalated ruthenium complexes are discussed and summarized. General strategies for the design of cyclometalating ligand and cyclometalated ruthenium complexes are introduced. By using different ancillary ligands, such as pyridine, imidazole, triazole, and pyrimidine, a great number of ruthenium complexes can be prepared. The presence of the Ru-C bond significantly …


Fabrication Of Riboflavin Electrochemical Sensor Based On Au Nanoparticles/Polydopamine/Carbon Nanotubes Modified Glassy Carbon Electrode, Hua-Ping Peng, Mei-Ling Yu, Xin Liu, Pan Liu, Wei Chen, Ai-Lin Liu, Xin-Hua Lin Feb 2016

Fabrication Of Riboflavin Electrochemical Sensor Based On Au Nanoparticles/Polydopamine/Carbon Nanotubes Modified Glassy Carbon Electrode, Hua-Ping Peng, Mei-Ling Yu, Xin Liu, Pan Liu, Wei Chen, Ai-Lin Liu, Xin-Hua Lin

Journal of Electrochemistry

A novel electrochemical platform for the high sensitivity detection of riboflavin was constructed by Au nanoparticles/polydopamine/carbon nanotubes (Au-PDA-MWCNTs) nanocomposite modified glassy carbon electrode. The Au-PDA-MWCNTs nanocomposite was synthesized by in situ reduction method. The characteristics of the as-prepared Au-PDA-MWCNTs nanocomposite modified electrodes were investigated by using UV-Vis spectroscopy, scanning electron microscopy (SEM) and electrochemical methods. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to study the electrochemical behavior of riboflavin (RF) at Au-PDA-MWCNTs nanocomposite modified electrodes. The results demonstrated that the present electrochemical sensor exhibited a wide linear range from 5×10-9 mol•L-1to 1×10-5 mol•L …