Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Journal of Electrochemistry

2015

Electrochemistry

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Applications Of Carbon Materials In Electrochemical Energy Storage, Ji Liang, Lei Wen, Hui-Ming Cheng, Feng Li Dec 2015

Applications Of Carbon Materials In Electrochemical Energy Storage, Ji Liang, Lei Wen, Hui-Ming Cheng, Feng Li

Journal of Electrochemistry

An electrode material for electrochemical energy storage is one of the key components for high performance devices. In a variety of electrochemical energy storage systems, carbon materials, especially the lately emerged carbon nanomaterials including the carbon nanotube and graphene, have been playing a very important role and brought new vitality to the development and demonstration of the broad application prospects. In this review, we summarize the applications of various carbon materials in the typical electrochemical energy storage devices, namely lithium/sodium ion batteries, supercapacitors, and lithium-sulfur batteries, as well as flexible electrochemical energy storage and electrochemical catalysis. A perspective of novel …


Nanosized Fe2O3 On Three Dimensional Hierarchical Porous Graphene-Like Matrices As High-Performance Anode Material For Lithium Ion Batteries, Qin-Wei Zhang, Yun-Yong Li, Pei-Kang Shen Feb 2015

Nanosized Fe2O3 On Three Dimensional Hierarchical Porous Graphene-Like Matrices As High-Performance Anode Material For Lithium Ion Batteries, Qin-Wei Zhang, Yun-Yong Li, Pei-Kang Shen

Journal of Electrochemistry

Ferric oxide (Fe2O3) as a promising anode material for lithium ion battery is due to its high theoretical capacity (1007 mAh·g-1), earth abundance and low cost. The nanosized Fe2O3 on the three dimensional hierarchical porous graphene-like network (denoted as Fe2O3-3D HPG) has been synthesized by homogeneous precipitation and heat treatment. The 3D HPG can provide a highly conductive structure in conjunction to support well contacted Fe2O3 nanoparticles, and effectively enhance the mechanical strength of the matrices during volume changes, as well as improve the …