Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Journal of Electrochemistry

Journal

2023

Lithium-sulfur batteries; Ultraviolet curing; In-situ cross-linked; Multifunctional binder; High-strength electrode

Articles 1 - 1 of 1

Full-Text Articles in Engineering

Ultraviolet-Initiated In-Situ Cross-Linking Of Multifunctional Binder Backbones Enables Robust Lithium-Sulfur Batteries, Sha Li, Xiao Zhan, Gu-Lian Wang, Hui-Qun Wang, Wei-Ming Xiong, Li Zhang Apr 2023

Ultraviolet-Initiated In-Situ Cross-Linking Of Multifunctional Binder Backbones Enables Robust Lithium-Sulfur Batteries, Sha Li, Xiao Zhan, Gu-Lian Wang, Hui-Qun Wang, Wei-Ming Xiong, Li Zhang

Journal of Electrochemistry

Lithium-sulfur (Li-S) batteries show attractive prospects owing to their high theoretical energy density, but their commercialization still faces such challenges as lithium polysulfides shuttling, severe volume change and considerable polarization. These stubborn issues place higher demands on each component in the battery, such as the development of multifunctional binders with superior mechanical properties. Herein, ethoxylated trimethylolpropane triacrylate was firstly introduced into sulfur cathodes, and in-situ cross-linked by ultraviolet (UV) curing combined with traditional polyvinylidene difluoride binder (i.e., forming a binary binder, denoted as c-ETPTA/PVDF) to construct high-loading and durable Li-S batteries. The covalently cross-linked ETPTA framework not …