Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Faculty Publications

2020

Coherence (Optics)

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Synthesizing General Electromagnetic Partially Coherent Sources From Random, Correlated Complex Screens, Milo W. Hyde Iv Mar 2020

Synthesizing General Electromagnetic Partially Coherent Sources From Random, Correlated Complex Screens, Milo W. Hyde Iv

Faculty Publications

We present a method to generate any genuine electromagnetic partially coherent source (PCS) from correlated, stochastic complex screens. The method described here can be directly implemented on existing spatial-light-modulator-based vector beam generators and can be used in any application which utilizes electromagnetic PCSs. Our method is based on the genuine cross-spectral density matrix criterion. Applying that criterion, we show that stochastic vector field realizations (corresponding to a desired electromagnetic PCS) can be generated by passing correlated Gaussian random numbers through “filters” with space-variant transfer functions. We include step-by-step instructions on how to generate the electromagnetic PCS field realizations. As an …


Generating Electromagnetic Dark And Antidark Partially Coherent Sources, Milo W. Hyde Iv Jan 2020

Generating Electromagnetic Dark And Antidark Partially Coherent Sources, Milo W. Hyde Iv

Faculty Publications

We present two methods to generate an electromagnetic dark and antidark partially coherent source. The first generalizes a recently published scalar approach by representing the stochastic electric field vector components as sums of randomly weighted, randomly tilted plane waves. The second method expands the field’s vector components in series of randomly weighted dark and antidark coherent modes. The statistical moments of the random weights—plane waves in the former method, coherent modes in the latter—are found by comparing the resulting means and covariances to those of the desired electromagnetic dark and antidark source. We validate both methods by simulating the generation …