Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Faculty Publications

2000

Photoluminescence

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Enhanced Luminescence In Ingan Multiple Quantum Wells With Quaternary Alingan Barriers, Jianping Zhang, J. Yang, Grigory Simin, M. Shatalov, M. Asif Khan, M. S. Shur, R. Gaska Oct 2000

Enhanced Luminescence In Ingan Multiple Quantum Wells With Quaternary Alingan Barriers, Jianping Zhang, J. Yang, Grigory Simin, M. Shatalov, M. Asif Khan, M. S. Shur, R. Gaska

Faculty Publications

We report on the comparative photoluminescence studies of AlGaN/GaN, GaN/InGaN, and AlInGaN/InGaN multiple quantum well(MQW) structures. The study clearly shows the improvement in materials quality with the introduction of indium. Our results point out the localized state emission mechanism for GaN/InGaN structures and the quantum well emission mechanism for AlInGaN/InGaN structures. The introduction of indium is the dominant factor responsible for the observed differences in the photoluminescence spectra of these MQW structures.


Optical Bandgap Formation In Alingan Alloys, G. Tamulaitis, K. Kazlauskas, S. Juršėnas, A. Žukauskas, M. A. Khan, J. W. Yang, J. Zhang, Grigory Simin, M. S. Shur, R. Gaska Oct 2000

Optical Bandgap Formation In Alingan Alloys, G. Tamulaitis, K. Kazlauskas, S. Juršėnas, A. Žukauskas, M. A. Khan, J. W. Yang, J. Zhang, Grigory Simin, M. S. Shur, R. Gaska

Faculty Publications

We report on the spectral dynamics of the reflectivity, site-selectively excited photoluminescence,photoluminescence excitation, and time-resolved luminescence in quaternary AlInGaN epitaxial layers grown on GaN templates. The incorporation of a few percents of In into AlGaN causes significant smoothening of the band-bottom potential profile in AlInGaN layers owing to improved crystal quality. An abrupt optical bandgap indicates that a nearly lattice-matched AlInGaN/GaN heterostructure with large energy band offsets can be grown for high-efficiency light-emitting devices.