Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Electrical and Computer Engineering Publications

Deep learning

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Engineering

A Systematic Review Of Convolutional Neural Network-Based Structural Condition Assessment Techniques, Sandeep Sony, Kyle Dunphy, Ayan Sadhu, Miriam A M Capretz Jan 2021

A Systematic Review Of Convolutional Neural Network-Based Structural Condition Assessment Techniques, Sandeep Sony, Kyle Dunphy, Ayan Sadhu, Miriam A M Capretz

Electrical and Computer Engineering Publications

With recent advances in non-contact sensing technology such as cameras, unmanned aerial and ground vehicles, the structural health monitoring (SHM) community has witnessed a prominent growth in deep learning-based condition assessment techniques of structural systems. These deep learning methods rely primarily on convolutional neural networks (CNNs). The CNN networks are trained using a large number of datasets for various types of damage and anomaly detection and post-disaster reconnaissance. The trained networks are then utilized to analyze newer data to detect the type and severity of the damage, enhancing the capabilities of non-contact sensors in developing autonomous SHM systems. In recent …


Noisy Importance Sampling Actor-Critic: An Off-Policy Actor-Critic With Experience Replay, Miriam A M Capretz, Norman Tasfi Jul 2020

Noisy Importance Sampling Actor-Critic: An Off-Policy Actor-Critic With Experience Replay, Miriam A M Capretz, Norman Tasfi

Electrical and Computer Engineering Publications

This paper presents Noisy Importance Sampling Actor-Critic (NISAC), a set of empirically validated modifications to the advantage actor-critic algorithm (A2C), allowing off-policy reinforcement learning and increased performance. NISAC uses additive action space noise, aggressive truncation of importance sample weights, and large batch sizes. We see that additive noise drastically changes how off-sample experience is weighted for policy updates. The modified algorithm achieves an increase in convergence speed and sample efficiency compared to both the on-policy actor-critic A2C and the importance weighted off-policy actor-critic algorithm. In comparison to state-of-the-art (SOTA) methods, such as actor-critic with experience replay (ACER), NISAC nears the …


Energy Consumption Prediction With Big Data: Balancing Prediction Accuracy And Computational Resources, Katarina Grolinger, Miriam Am Capretz, Luke Seewald Jun 2016

Energy Consumption Prediction With Big Data: Balancing Prediction Accuracy And Computational Resources, Katarina Grolinger, Miriam Am Capretz, Luke Seewald

Electrical and Computer Engineering Publications

In recent years, advances in sensor technologies and expansion of smart meters have resulted in massive growth of energy data sets. These Big Data have created new opportunities for energy prediction, but at the same time, they impose new challenges for traditional technologies. On the other hand, new approaches for handling and processing these Big Data have emerged, such as MapReduce, Spark, Storm, and Oxdata H2O. This paper explores how findings from machine learning with Big Data can benefit energy consumption prediction. An approach based on local learning with support vector regression (SVR) is presented. Although local learning itself is …