Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Electrical and Computer Engineering Faculty Research & Creative Works

Series

2023

Optimal tracking control

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Continual Reinforcement Learning Formulation For Zero-Sum Game-Based Constrained Optimal Tracking, Behzad Farzanegan, Sarangapani Jagannathan Jan 2023

Continual Reinforcement Learning Formulation For Zero-Sum Game-Based Constrained Optimal Tracking, Behzad Farzanegan, Sarangapani Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

This study provides a novel reinforcement learning-based optimal tracking control of partially uncertain nonlinear discrete-time (DT) systems with state constraints using zero-sum game (ZSG) formulation. To address optimal tracking, a novel augmented system consisting of tracking error and its integral value, along with an uncertain desired trajectory, is constructed. A barrier function (BF) with a tradeoff factor is incorporated into the cost function to keep the state trajectories to remain within a compact set and to balance safety with optimality. Next, by using the modified value functional, the ZSG formulation is introduced wherein an actor–critic neural network (NN) framework is …


Optimal Tracking Of Nonlinear Discrete-Time Systems Using Zero-Sum Game Formulation And Hybrid Learning, Behzad Farzanegan, S. (Sarangapani) Jagannathan Jan 2023

Optimal Tracking Of Nonlinear Discrete-Time Systems Using Zero-Sum Game Formulation And Hybrid Learning, Behzad Farzanegan, S. (Sarangapani) Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

This paper presents a novel hybrid learning-based optimal tracking method to address zero-sum game problems for partially uncertain nonlinear discrete-time systems. An augmented system and its associated discounted cost function are defined to address optimal tracking. Three multi-layer neural networks (NNs) are utilized to approximate the optimal control and the worst-case disturbance inputs, and the value function. The critic weights are tuned using the hybrid technique, whose weights are updated once at the sampling instants and in an iterative manner over finite times within the sampling instants. The proposed hybrid technique helps accelerate the convergence of the approximated value functional …


Continual Learning-Based Optimal Output Tracking Of Nonlinear Discrete-Time Systems With Constraints: Application To Safe Cargo Transfer, Behzad Farzanegan, S. (Sarangapani) Jagannathan Jan 2023

Continual Learning-Based Optimal Output Tracking Of Nonlinear Discrete-Time Systems With Constraints: Application To Safe Cargo Transfer, Behzad Farzanegan, S. (Sarangapani) Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

This Paper Addresses a Novel Lifelong Learning (LL)-Based Optimal Output Tracking Control of Uncertain Non-Linear Affine Discrete-Time Systems (DT) with State Constraints. First, to Deal with Optimal Tracking and Reduce the Steady State Error, a Novel Augmented System, Including Tracking Error and its Integral Value and Desired Trajectory, is Proposed. to Guarantee Safety, an Asymmetric Barrier Function (BF) is Incorporated into the Utility Function to Keep the Tracking Error in a Safe Region. Then, an Adaptive Neural Network (NN) Observer is Employed to Estimate the State Vector and the Control Input Matrix of the Uncertain Nonlinear System. Next, an NN-Based …