Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Electrical and Computer Engineering Faculty Research & Creative Works

Series

2005

Time Domain Analysis

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Complex Power Distribution Network Investigation Using Spice Based Extraction From First Principle Formulations, Giuseppe Selli, James L. Drewniak, Richard E. Dubroff, Jun Fan, James L. Knighten, Norman W. Smith, Dean Mccoy, Bruce Archambeault, Stefano Grivet-Talocia, Flavio G. Canavero Oct 2005

Complex Power Distribution Network Investigation Using Spice Based Extraction From First Principle Formulations, Giuseppe Selli, James L. Drewniak, Richard E. Dubroff, Jun Fan, James L. Knighten, Norman W. Smith, Dean Mccoy, Bruce Archambeault, Stefano Grivet-Talocia, Flavio G. Canavero

Electrical and Computer Engineering Faculty Research & Creative Works

The modeling and the analysis of the power distribution networks (PDN) within multi-layer printed circuit board is crucial for the investigation of the performance of PCB systems. Carrying out such analyses in SPICE based tools has the advantage of being faster than the corresponding full-wave modeling and it allows obtaining both frequency and time domain results.


A Three-Dimensional Fdtd Subgridding Method With Separate Spatial And Temporal Subgridding Interfaces, Kai Xiao, David Pommerenke, James L. Drewniak Aug 2005

A Three-Dimensional Fdtd Subgridding Method With Separate Spatial And Temporal Subgridding Interfaces, Kai Xiao, David Pommerenke, James L. Drewniak

Electrical and Computer Engineering Faculty Research & Creative Works

The idea of separating the spatial and temporal subgridding interfaces is introduced in this paper. Based on this idea, the spatial and temporal subgridding algorithms can be developed and analyzed separately. The spatial algorithm was given in the previous paper. In this paper, the temporal subgridding algorithm is described and the stability is illustrated by the analytical formulation of a one-dimensional model. An FDTD code that combines the spatial and temporal subgridding algorithms is implemented. Numerical test models are calculated to show the stability and accuracy of the proposed method.


Validation Of Circuit Extraction Procedure By Means Of Frequency And Time Domain Measurement, Giulio Antonini, Antonio Ciccomancini Scogna, Antonio Orlandi, Vittorio Ricchiuti, Giuseppe Selli, Shaofeng Luan, James L. Drewniak Aug 2005

Validation Of Circuit Extraction Procedure By Means Of Frequency And Time Domain Measurement, Giulio Antonini, Antonio Ciccomancini Scogna, Antonio Orlandi, Vittorio Ricchiuti, Giuseppe Selli, Shaofeng Luan, James L. Drewniak

Electrical and Computer Engineering Faculty Research & Creative Works

Aim of this paper is the validation in both frequency and time domain of the procedure to extract fully H-Spice compatible equivalent circuits of structures on printed circuit boards. The procedure is initiated by standard measurement of scattering parameters between 40MHz to 20GH. After the extraction of the equivalent circuit, the computed scattering parameters are compared with those measured. The same equivalent circuit is also used for transient analysis in order to compare TDR measurement and eye-pattern to a pseudo-random bit sequence with those coming from the simulations.


Wide-Band Lorentzian Media In The Fdtd Algorithm, Marina Koledintseva, James L. Drewniak, David Pommerenke, Giulio Antonini, Antonio Orlandi, Konstantin Rozanov May 2005

Wide-Band Lorentzian Media In The Fdtd Algorithm, Marina Koledintseva, James L. Drewniak, David Pommerenke, Giulio Antonini, Antonio Orlandi, Konstantin Rozanov

Electrical and Computer Engineering Faculty Research & Creative Works

This paper considers the case of a wide-band Lorentzian (WBL) algorithm in the finite-difference time-domain (FDTD) modeling of dispersive media. It is shown herein that the WBL model is a physically meaningful and practically useful case of the frequency behavior of materials along with the Debye and narrow-band Lorentzian (NBL). The recursive convolution algorithms for the finite-difference time-domain technique for NBL and WBL models differ. The Debye model, which is suitable for comparatively low-frequency dispersive materials, may not have sufficient number of parameters for describing the wide-band material, especially if this material exhibits pronounced absorption at higher frequencies. It is …