Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Electrical and Computer Engineering Faculty Research & Creative Works

Series

2005

Power Converters

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Modeling Of Capacitor Impedance In Switching Converters, Jonathan W. Kimball, Philip T. Krein, Kevin R. Cahill Dec 2005

Modeling Of Capacitor Impedance In Switching Converters, Jonathan W. Kimball, Philip T. Krein, Kevin R. Cahill

Electrical and Computer Engineering Faculty Research & Creative Works

Switched capacitor (SC) converters are gaining acceptance as alternatives to traditional, inductor-based switching power converters. Proper design of SC converters requires an understanding of all loss sources and their impacts on circuit operation. In the present work, an equivalent resistance method is developed for analysis, and equivalent resistance formulae are presented for various modes of operation. Quasiresonant converters are explored and compared to standard SC converters. Comparisons to inductor-based switching power converters are made. A number of capacitor technologies are evaluated and compared for applications to both SC converters and inductor-based converters. The resulting model can be used to accurately …


Modeling Controlled Switches And Diodes For Electro-Thermal Simulation, Jonathan W. Kimball Jun 2005

Modeling Controlled Switches And Diodes For Electro-Thermal Simulation, Jonathan W. Kimball

Electrical and Computer Engineering Faculty Research & Creative Works

Designers of advanced power converters may choose from a variety of switching device models for simulation. Some situations call for simple idealized models, while others require physics-based models. When evaluating thermal system performance, a behavioral model that includes both conduction and switching losses is desired. A set of models has been developed to include both unidirectional devices, such as IGBTs, BJTs, and diodes, and bidirectional devices, such as MOSFETs. Logic and timing elements are used to insert voltage and current sources into the circuit at appropriate times. All losses affect circuit operation, so simulation can accurately predict losses when the …


Analysis And Design Of Switched Capacitor Converters, Jonathan W. Kimball, Philip T. Krein Mar 2005

Analysis And Design Of Switched Capacitor Converters, Jonathan W. Kimball, Philip T. Krein

Electrical and Computer Engineering Faculty Research & Creative Works

Switched capacitor converters have become more common in recent years. Crucial to understanding the maximum power throughput and efficiency is a model of the converter's equivalent resistance. A new form for equivalent resistance is derived and discussed in a design context. Quasi-resonant operation is also explored and compared to non-resonant operation. Several capacitor technologies are evaluated and compared.


Suitability Of Pulse Train Control Technique For Bifred Converter, Mehdi Ferdowsi, Ali Emadi, Mark Telefus, Anatoly Shteynberg Jan 2005

Suitability Of Pulse Train Control Technique For Bifred Converter, Mehdi Ferdowsi, Ali Emadi, Mark Telefus, Anatoly Shteynberg

Electrical and Computer Engineering Faculty Research & Creative Works

Pulse TrainTM control scheme is presented and applied to a boost integrated flyback rectifier/energy storage dc-dc (BIFRED) converter operating in discontinuous conduction mode (DCM), which avoids the light-load high-voltage stress problem. In contrast to the conventional control techniques, the principal idea of Pulse Train technique is to regulate the output voltage using a series of high and low energy pulses generated by the current of the inductor. The applicability of the proposed technique to both the input and magnetizing inductances of BIFRED converter is investigated. Analysis of BIFRED converter operating in DCM as well as the output voltage ripple …