Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Electrical and Computer Engineering Faculty Research & Creative Works

Series

2000

Finite Element Analysis

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Finite Element Modeling Of Patch Antenna And Cavity Sources, Yun Ji, Todd H. Hubing, James L. Drewniak Aug 2000

Finite Element Modeling Of Patch Antenna And Cavity Sources, Yun Ji, Todd H. Hubing, James L. Drewniak

Electrical and Computer Engineering Faculty Research & Creative Works

This paper examines two different approaches that can be used to model patch antennas and cavities fed by a coaxial cable. The probe model represents the feed as a current filament along the center conductor of the coaxial cable. The coaxial-cable model enforces the analytical field distribution at the cable opening. These two models have been implemented in a hybrid FEM/MoM code. A power bus structure and a cavity geometry with coaxial-cable feeds are investigated. Numerical results obtained for these two examples are compared with measurements. It is shown that the probe model should only be applied to electrically short …


Experimental And Numerical Study Of The Radiation From Microstrip Bends, H. Wang, Yun Ji, Todd H. Hubing, James L. Drewniak, Thomas Van Doren, Richard E. Dubroff Aug 2000

Experimental And Numerical Study Of The Radiation From Microstrip Bends, H. Wang, Yun Ji, Todd H. Hubing, James L. Drewniak, Thomas Van Doren, Richard E. Dubroff

Electrical and Computer Engineering Faculty Research & Creative Works

This paper investigates the radiation from microstrip lines with 90-degree bends. A 1-GHz TEM cell is used to measure the radiation from microstrip lines with different kinds of bends. A full wave hybrid FEM/MoM code is used to compute the radiation. Both experimental and numerical results show that there is no significant difference between the radiation from right angle bends and bends with two 45-degree corners at frequencies and trace dimensions that are likely to be found on printed circuit boards.


Fdtd And Fem/Mom Modeling Of Emi Resulting From A Trace Near A Pcb Edge, Daniel P. Berg, Motoshi Tanaka, Yun Ji, Xiaoning Ye, James L. Drewniak, Todd H. Hubing, Richard E. Dubroff, Thomas Van Doren Aug 2000

Fdtd And Fem/Mom Modeling Of Emi Resulting From A Trace Near A Pcb Edge, Daniel P. Berg, Motoshi Tanaka, Yun Ji, Xiaoning Ye, James L. Drewniak, Todd H. Hubing, Richard E. Dubroff, Thomas Van Doren

Electrical and Computer Engineering Faculty Research & Creative Works

PCB traces routed near board edges and carrying high-speed signals are considered to contribute to EMI problems. Consequently, design maxims state that traces that might have intentional or unintentional high frequency components on them be kept away from board edges. This costs valuable surface area as boards become more densely designed. Further, design maxims concerning traces near board edges are not well quantified. The increase in EMI as a trace is routed increasingly closer to the PCB edge has been studied experimentally and with numerical modeling.