Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Electrical and Computer Engineering Faculty Research & Creative Works

Series

1997

EM Radiation

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Numerical And Experimental Corroboration Of An Fdtd Thin-Slot Model For Slots Near Corners Of Shielding Enclosures, Min Li, Kuang-Ping Ma, David M. Hockanson, James L. Drewniak, Todd H. Hubing, Thomas Van Doren Aug 1997

Numerical And Experimental Corroboration Of An Fdtd Thin-Slot Model For Slots Near Corners Of Shielding Enclosures, Min Li, Kuang-Ping Ma, David M. Hockanson, James L. Drewniak, Todd H. Hubing, Thomas Van Doren

Electrical and Computer Engineering Faculty Research & Creative Works

Simple design maxims to restrict slot dimensions in enclosure designs below a half-wave length are not always adequate for minimizing electromagnetic interference (EMI). Complex interactions between cavity modes, sources, and slots can result in appreciable radiation through nonresonant length slots. The finite-difference time domain (FDTD) method can be employed to pursue these issues with adequate modeling of thin slots. Subcellular FDTD algorithms for modeling thin slots in conductors have previously been developed. One algorithm based on a quasistatic approximation has been shown to agree well with experimental results for thin slots in planes. This FDTD thin-slot algorithm is compared herein …


Comparison Of Fdtd Algorithms For Subcellular Modeling Of Slots In Shielding Enclosures, Kuang-Ping Ma, Min Li, James L. Drewniak, Todd H. Hubing, Thomas Van Doren May 1997

Comparison Of Fdtd Algorithms For Subcellular Modeling Of Slots In Shielding Enclosures, Kuang-Ping Ma, Min Li, James L. Drewniak, Todd H. Hubing, Thomas Van Doren

Electrical and Computer Engineering Faculty Research & Creative Works

Subcellular modeling of thin slots in the finite-difference time-domain (FDTD) method is investigated. Two subcellular algorithms for modeling thin slots with the FDTD method are compared for application to shielding end osures in electromagnetic compatibility (EMC). The stability of the algorithms is investigated, and comparisons between the two methods for slots in planes, and slots in loaded cavities are made. Results for scattering from a finite-length slot in an infinite plane employing one of the algorithms are shown to agree well with published experimental results, and power delivered to an enclosure with a slot agree well with results measured for …