Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Electrical and Computer Engineering Faculty Publications and Presentations

2003

Logic circuits -- Design and construction

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Cellular Automata Realization Of Regular Logic, Andrzej Buller, Marek Perkowski May 2003

Cellular Automata Realization Of Regular Logic, Andrzej Buller, Marek Perkowski

Electrical and Computer Engineering Faculty Publications and Presentations

This paper presents a cellular-automatic model of a reversible regular structure called Davio lattice. Regular circuits are investigated because of the requirement of future (nano-) technologies where long wires should be avoided. Reversibility is a valuable feature because it means much lower energy dissipation. A circuit is reversible if the number of its inputs equals the number of its outputs and there is a one-to-one mapping between spaces of input vectors and output vectors. It is believed that one day regular reversible structures will be implemented as nanoscale 3-dimensional chips. This paper introduces the notion of the Toffoli gate and …


A Hierarchical Approach To Computer-Aided Design Of Quantum Circuits, Marek Perkowski, Martin Lukac, Pawel Kerntopf, Mikhail Pivtoraiko, Michele Folgheraiter, Yong Woo Choi, Jung-Wook Kim, Dongsoo Lee, Woong Hwangbo, Hyungock Kim Jan 2003

A Hierarchical Approach To Computer-Aided Design Of Quantum Circuits, Marek Perkowski, Martin Lukac, Pawel Kerntopf, Mikhail Pivtoraiko, Michele Folgheraiter, Yong Woo Choi, Jung-Wook Kim, Dongsoo Lee, Woong Hwangbo, Hyungock Kim

Electrical and Computer Engineering Faculty Publications and Presentations

A new approach to synthesis of permutation class of quantum logic circuits has been proposed in this paper. This approach produces better results than the previous approaches based on classical reversible logic and can be easier tuned to any particular quantum technology such as nuclear magnetic resonance (NMR). First we synthesize a library of permutation (pseudobinary) gates using a Computer-Aided-Design approach that links evolutionary and combinatorics approaches with human experience and creativity. Next the circuit is designed using these gates and standard 1*1 and 2*2 quantum gates and finally the optimizing tautological transforms are applied to the circuit, producing a …