Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Reconfigurable 4-Frequency Cmos Oscillator Based On Aln Contour-Mode Mems Resonators, Matteo Rinaldi, Chengjie Zuo, Jan Van Der Spiegel, Gianluca Piazza Oct 2010

Reconfigurable 4-Frequency Cmos Oscillator Based On Aln Contour-Mode Mems Resonators, Matteo Rinaldi, Chengjie Zuo, Jan Van Der Spiegel, Gianluca Piazza

Chengjie Zuo

This paper reports on the first demonstration of a reconfigurable Complementary Metal Oxide Semiconductor (CMOS) oscillator based on MicroElectroMechanical System (MEMS) resonators operating at 4 different frequencies (268, 483, 690 and 785 MHz). A bank of multi-frequency switchable AlN Contour-Mode MEMS resonators (CMRs) were connected to a single CMOS oscillator circuit that can be configured to selectively operate in 4 different states with distinct oscillation frequencies. The phase noise (PN) of the reconfigurable oscillator was measured for each of the 4 different frequencies of operation showing values between -94 and -70 dBc/Hz at 1 KHz offset and PN floor values …


1.5-Ghz Cmos Voltage-Controlled Oscillator Based On Thickness-Field-Excited Piezoelectric Aln Contour-Mode Mems Resonators, Chengjie Zuo, Jan Van Der Spiegel, Gianluca Piazza Sep 2010

1.5-Ghz Cmos Voltage-Controlled Oscillator Based On Thickness-Field-Excited Piezoelectric Aln Contour-Mode Mems Resonators, Chengjie Zuo, Jan Van Der Spiegel, Gianluca Piazza

Chengjie Zuo

This paper reports on the first demonstration of a 1.5 GHz CMOS oscillator based on thickness-field-excited (TFE) piezoelectric AlN MEMS contour-mode resonators (CMRs). The measured phase noise is −85 dBc/Hz at 10 kHz offset frequency and −151 dBc/Hz at 1 MHz. This is the highest frequency MEMS oscillator ever reported using a laterally vibrating mechanical resonator. The high frequency operation has been enabled by optimizing the geometrical design and micro-fabrication process of TFE AlN CMRs, so that a low effective motional resistance around 50 Ω is achieved together with a high unloaded quality factor (Qu) approaching 2500 and simultaneously high …


Multifrequency Pierce Oscillators Based On Piezoelectric Aln Contour-Mode Mems Technology, Chengjie Zuo, Nipun Sinha, Jan Van Der Spiegel, Gianluca Piazza Jun 2010

Multifrequency Pierce Oscillators Based On Piezoelectric Aln Contour-Mode Mems Technology, Chengjie Zuo, Nipun Sinha, Jan Van Der Spiegel, Gianluca Piazza

Chengjie Zuo

This paper reports on the first demonstration of multifrequency (176-, 222-, 307-, and 482-MHz) oscillators based on the piezoelectric AlN contour-mode microelectromechanical systems technology. All the oscillators show phase noise values between −88 and −68 dBc/Hz at 1-kHz offset frequency from the carriers and phase noise floor values as low as −160 dBc/Hz at 1-MHz offset. The same Pierce circuit design is employed to sustain oscillations at the four different frequencies; on the other hand, the oscillator core consumes 10 mW. The AlN resonators are currently wire bonded to the integrated circuit realized in the AMIS 0.5-μm 5-V complimentary metal-oxide-semiconductor …


Ghz Range Nanoscaled Aln Contour-Mode Resonant Sensors (Cmr-S) With Self-Sustained Cmos Oscillator, Matteo Rinaldi, Chiara Zuniga, Chengjie Zuo, Gianluca Piazza Jun 2010

Ghz Range Nanoscaled Aln Contour-Mode Resonant Sensors (Cmr-S) With Self-Sustained Cmos Oscillator, Matteo Rinaldi, Chiara Zuniga, Chengjie Zuo, Gianluca Piazza

Chengjie Zuo

This paper reports on the design and experimental verification of a new class of nanoscaled AlN Contour-Mode Resonant Sensors (CMR-S) for the detection of volatile organic chemicals (VOC) operating at frequencies above 1 GHz and connected to a chip-based CMOS oscillator circuit for direct frequency read-out. This work shows that by scaling the CMR-S to 250 nm in thickness and by operating at high frequencies (1 GHz) a limit of detection of ~35 zg/µm2 and a fast response time (<1 ms) can be attained. In addition, the capability to detect concentrations of volatile organic compounds such as 2,6 dinitroluene (DNT) as low as 1.5 ppb (4.7 ag/µm2) is experimentally verified.


Single-Ended-To-Differential And Differential-To-Differential Channel-Select Filters Based On Piezoelectric Aln Contour-Mode Mems Resonators, Chengjie Zuo, Gianluca Piazza Jun 2010

Single-Ended-To-Differential And Differential-To-Differential Channel-Select Filters Based On Piezoelectric Aln Contour-Mode Mems Resonators, Chengjie Zuo, Gianluca Piazza

Chengjie Zuo

This paper reports on the first demonstration of single-ended-to-differential and differential-to-differential (S2D and D2D) channel-select filters based on single-layer (SL) and dual-layer-stacked (DLS) AlN contour-mode MEMS resonators. The key filter performances in terms of insertion loss (as low as 1.4 dB), operating frequency (250-1280 MHz), and out-of-band rejection (up to 60 dB) constitute a significant advancement over all other state-of-the-art RF MEMS technologies. The fabrication process, namely stacking of two piezoelectric AlN layers (600 nm each) and three Pt electrode layers (100 nm each), is fully compatible with the previously demonstrated AlN RF MEMS switch process (also post-CMOS compatible), which …


Very High Frequency Channel-Select Mems Filters Based On Self-Coupled Piezoelectric Aln Contour-Mode Resonators, Chengjie Zuo, Nipun Sinha, Gianluca Piazza May 2010

Very High Frequency Channel-Select Mems Filters Based On Self-Coupled Piezoelectric Aln Contour-Mode Resonators, Chengjie Zuo, Nipun Sinha, Gianluca Piazza

Chengjie Zuo

This paper reports experimental results on single-chip multi-frequency channel-select filters based on self-coupled piezoelectric aluminum nitride (AlN) contour-mode microelectromechanical (MEMS) resonators. Two-port AlN contour-mode resonators are connected in series and electrically coupled using their intrinsic capacitance to realize multi-frequency (94–271 MHz), narrow bandwidth (~0.2%), low insertion loss (~2.3 dB), high off-band rejection (~60 dB) and high linearity (IIP3 ~100 dBmV) channel-select filters on the same chip. This technology enables multi-frequency, high-performance and small-form-factor filter arrays and makes a single-chip multi-band reconfigurable radio frequency (RF) solution possible in the near future.


1.05-Ghz Cmos Oscillator Based On Lateral-Field-Excited Piezoelectric Aln Contour-Mode Mems Resonators, Chengjie Zuo, Jan Van Der Spiegel, Gianluca Piazza Jan 2010

1.05-Ghz Cmos Oscillator Based On Lateral-Field-Excited Piezoelectric Aln Contour-Mode Mems Resonators, Chengjie Zuo, Jan Van Der Spiegel, Gianluca Piazza

Chengjie Zuo

This paper reports on the first demonstration of a 1.05-GHz microelectromechanical (MEMS) oscillator based on lateral-field-excited (LFE) piezoelectric AlN contour-mode resonators. The oscillator shows a phase noise level of −81 dBc/Hz at 1-kHz offset frequency and a phase noise floor of −146 dBc/Hz, which satisfies the global system for mobile communications (GSM) requirements for ultra-high frequency (UHF) local oscillators (LO). The circuit was fabricated in the AMI semiconductor (AMIS) 0.5-μm complementary metal-oxide-semiconductor (CMOS) process, with the oscillator core consuming only 3.5 mW DC power. The device overall performance has the best figure-of-merit (FoM) when compared with other gigahertz oscillators that …


Novel Electrode Configurations In Dual-Layer Stacked And Switchable Aln Contour-Mode Resonators For Low Impedance Filter Termination And Reduced Insertion Loss, Chengjie Zuo, Nipun Sinha, Gianluca Piazza Jan 2010

Novel Electrode Configurations In Dual-Layer Stacked And Switchable Aln Contour-Mode Resonators For Low Impedance Filter Termination And Reduced Insertion Loss, Chengjie Zuo, Nipun Sinha, Gianluca Piazza

Chengjie Zuo

This paper reports, for the first time, on the design and demonstration of two novel electrode configurations in dual-layer stacked Aluminum Nitride (AlN) piezoelectric contour-mode resonators to obtain low filter termination resistance (down to 300 Ω, which also results in better filter out-of-band rejection) and reduced insertion loss (IL as low as 1.6 dB) in multi-frequency (100 MHz – 1 GHz) AlN MEMS filters. The microfabrication process is fully compatible with the previously demonstrated AlN RF MEMS switches, which makes it possible to design and integrate multi-frequency switchable filter banks on a single chip.


Ss-Dna Functionalized Ultra-Thin-Film Aln Contour-Mode Resonators With Self-Sustained Oscillator For Volatile Organic Chemical Detection, Matteo Rinaldi, Brandon Duick, Chiara Zuniga, Chengjie Zuo, Gianluca Piazza Jan 2010

Ss-Dna Functionalized Ultra-Thin-Film Aln Contour-Mode Resonators With Self-Sustained Oscillator For Volatile Organic Chemical Detection, Matteo Rinaldi, Brandon Duick, Chiara Zuniga, Chengjie Zuo, Gianluca Piazza

Chengjie Zuo

This paper reports on the design and experimental verification of a new class of nanoscale gravimetric sensors based on ultra-thin-film AlN Contour-Mode Resonant Sensor (CMR-S) functionalized with ss-DNA and connected to a chip-based self-sustaining oscillator loop (fabricated in the ON Semiconductor 0.5 μm CMOS process) for direct frequency read-out. The 220 MHz oscillator based on the ultra-thin AlN CMR-S exhibits an Allan Variance of ∼20 Hz for 100 ms gate time. The sensor affinity for the adsorption of volatile organic chemicals such as 2,6 dinitroluene (DNT, a simulant for explosive vapors) is enhanced by functionalizing the top gold electrode of …


Super-High-Frequency Two-Port Aln Contour-Mode Resonators For Rf Applications, Matteo Rinaldi, Chiara Zuniga, Chengjie Zuo, Gianluca Piazza Jan 2010

Super-High-Frequency Two-Port Aln Contour-Mode Resonators For Rf Applications, Matteo Rinaldi, Chiara Zuniga, Chengjie Zuo, Gianluca Piazza

Chengjie Zuo

This paper reports on the design and experimental verification of a new class of thin-film (250 nm) super-high-frequency laterally-vibrating piezoelectric microelectromechanical (MEMS) resonators suitable for the fabrication of narrow-band MEMS filters operating at frequencies above 3 GHz. The device dimensions have been opportunely scaled both in the lateral and vertical dimensions to excite a contour-extensional mode of vibration in nanofeatures of an ultra-thin (250 nm) AlN film. In this first demonstration, 2-port resonators vibrating up to 4.5 GHz have been fabricated on the same die and attained electromechanical coupling, kt2, in excess of 1.5%. These devices are employed to synthesize …